A generalized interrupted time series model for assessing complex health care interventions.

Pub Date : 2022-12-01 Epub Date: 2022-05-25 DOI:10.1007/s12561-022-09346-6
Maricela Cruz, Hernando Ombao, Daniel L Gillen
{"title":"A generalized interrupted time series model for assessing complex health care interventions.","authors":"Maricela Cruz, Hernando Ombao, Daniel L Gillen","doi":"10.1007/s12561-022-09346-6","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing the impact of complex interventions on measurable health outcomes is a growing concern in health care and health policy. Interrupted time series (ITS) designs borrow from traditional case-crossover designs and function as quasi-experimental methodology able to retrospectively analyze the impact of an intervention. Statistical models used to analyze ITS designs primarily focus on continuous-valued outcomes. We propose the \"Generalized Robust ITS\" (GRITS) model appropriate for outcomes whose underlying distribution belongs to the exponential family of distributions, thereby expanding the available methodology to adequately model binary and count responses. GRITS formally implements a test for the existence of a change point in discrete ITS. The methodology proposed is able to test for the existence of and estimate the change point, borrow information across units in multi-unit settings, and test for differences in the mean function and correlation pre- and post-intervention. The methodology is illustrated by analyzing patient falls from a hospital that implemented and evaluated a new care delivery model in multiple units.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208393/pdf/nihms-1884816.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-022-09346-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing the impact of complex interventions on measurable health outcomes is a growing concern in health care and health policy. Interrupted time series (ITS) designs borrow from traditional case-crossover designs and function as quasi-experimental methodology able to retrospectively analyze the impact of an intervention. Statistical models used to analyze ITS designs primarily focus on continuous-valued outcomes. We propose the "Generalized Robust ITS" (GRITS) model appropriate for outcomes whose underlying distribution belongs to the exponential family of distributions, thereby expanding the available methodology to adequately model binary and count responses. GRITS formally implements a test for the existence of a change point in discrete ITS. The methodology proposed is able to test for the existence of and estimate the change point, borrow information across units in multi-unit settings, and test for differences in the mean function and correlation pre- and post-intervention. The methodology is illustrated by analyzing patient falls from a hospital that implemented and evaluated a new care delivery model in multiple units.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
用于评估复杂医疗干预措施的广义间断时间序列模型。
评估复杂干预措施对可测量健康结果的影响是医疗保健和卫生政策领域日益关注的问题。中断时间序列(ITS)设计借鉴了传统的病例交叉设计,是一种准实验方法,能够回顾性地分析干预措施的影响。用于分析 ITS 设计的统计模型主要关注连续值结果。我们提出了 "广义稳健 ITS"(GRITS)模型,该模型适用于基本分布属于指数分布族的结果,从而将现有方法扩展到二元和计数反应模型。GRITS 正式实现了离散 ITS 中变化点存在性的检验。所提出的方法能够检验变化点是否存在并对其进行估计,在多单位设置中借用跨单位信息,并检验干预前后平均函数和相关性的差异。该方法通过分析一家医院的病人跌倒情况来说明,该医院在多个单位实施并评估了一种新的医疗服务模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1