{"title":"Multi-scale affinities with missing data: Estimation and applications.","authors":"Min Zhang, Gal Mishne, Eric C Chi","doi":"10.1002/sam.11561","DOIUrl":null,"url":null,"abstract":"<p><p>Many machine learning algorithms depend on weights that quantify row and column similarities of a data matrix. The choice of weights can dramatically impact the effectiveness of the algorithm. Nonetheless, the problem of choosing weights has arguably not been given enough study. When a data matrix is completely observed, Gaussian kernel affinities can be used to quantify the local similarity between pairs of rows and pairs of columns. Computing weights in the presence of missing data, however, becomes challenging. In this paper, we propose a new method to construct row and column affinities even when data are missing by building off a co-clustering technique. This method takes advantage of solving the optimization problem for multiple pairs of cost parameters and filling in the missing values with increasingly smooth estimates. It exploits the coupled similarity structure among both the rows and columns of a data matrix. We show these affinities can be used to perform tasks such as data imputation, clustering, and matrix completion on graphs.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"15 3","pages":"303-313"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216212/pdf/nihms-1751214.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11561","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Many machine learning algorithms depend on weights that quantify row and column similarities of a data matrix. The choice of weights can dramatically impact the effectiveness of the algorithm. Nonetheless, the problem of choosing weights has arguably not been given enough study. When a data matrix is completely observed, Gaussian kernel affinities can be used to quantify the local similarity between pairs of rows and pairs of columns. Computing weights in the presence of missing data, however, becomes challenging. In this paper, we propose a new method to construct row and column affinities even when data are missing by building off a co-clustering technique. This method takes advantage of solving the optimization problem for multiple pairs of cost parameters and filling in the missing values with increasingly smooth estimates. It exploits the coupled similarity structure among both the rows and columns of a data matrix. We show these affinities can be used to perform tasks such as data imputation, clustering, and matrix completion on graphs.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.