SITH: An R package for visualizing and analyzing a spatial model of intratumor heterogeneity

Phillip B. Nicol, Dániel L. Barabási, Kevin R. Coombes, Amir Asiaee
{"title":"SITH: An R package for visualizing and analyzing a spatial model of intratumor heterogeneity","authors":"Phillip B. Nicol,&nbsp;Dániel L. Barabási,&nbsp;Kevin R. Coombes,&nbsp;Amir Asiaee","doi":"10.1002/cso2.1033","DOIUrl":null,"url":null,"abstract":"<p>Cancer progression, including the development of intratumor heterogeneity, is inherently a spatial process. Mathematical models of tumor evolution may be a useful starting point for understanding the patterns of heterogeneity that can emerge in the presence of spatial growth. A commonly studied spatial growth model assumes that tumor cells occupy sites on a lattice and replicate into neighboring sites. Our R package <i>SITH</i> provides a convenient interface for exploring this model. Our efficient simulation algorithm allows for users to generate 3D tumors with millions of cells in under a minute. For the distribution of mutations throughout the tumor, <i>SITH</i> provides interactive graphics and summary plots. Additionally, <i>SITH</i> can produce synthetic bulk and single-cell DNA-seq datasets by sampling from the simulated tumor. A streamlined application programming interface (API) makes <i>SITH</i> a useful tool for investigating the relationship between spatial growth and intratumor heterogeneity. <i>SITH</i> is a part of <span>CRAN</span> and can be installed by running <span>install.packages(“SITH”)</span> from the R console. See https://CRAN.R-project.org/package=SITH for the user manual and package vignette.</p>","PeriodicalId":72658,"journal":{"name":"Computational and systems oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374116/pdf/nihms-1801946.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and systems oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cso2.1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer progression, including the development of intratumor heterogeneity, is inherently a spatial process. Mathematical models of tumor evolution may be a useful starting point for understanding the patterns of heterogeneity that can emerge in the presence of spatial growth. A commonly studied spatial growth model assumes that tumor cells occupy sites on a lattice and replicate into neighboring sites. Our R package SITH provides a convenient interface for exploring this model. Our efficient simulation algorithm allows for users to generate 3D tumors with millions of cells in under a minute. For the distribution of mutations throughout the tumor, SITH provides interactive graphics and summary plots. Additionally, SITH can produce synthetic bulk and single-cell DNA-seq datasets by sampling from the simulated tumor. A streamlined application programming interface (API) makes SITH a useful tool for investigating the relationship between spatial growth and intratumor heterogeneity. SITH is a part of CRAN and can be installed by running install.packages(“SITH”) from the R console. See https://CRAN.R-project.org/package=SITH for the user manual and package vignette.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个可视化和分析肿瘤内异质性空间模型的R包
癌症的进展,包括肿瘤内异质性的发展,本质上是一个空间过程。肿瘤进化的数学模型可能是理解在空间生长中可能出现的异质性模式的有用起点。一个普遍研究的空间生长模型假设肿瘤细胞占据晶格上的位置并复制到邻近的位置。我们的R包SITH为探索这个模型提供了一个方便的接口。我们高效的模拟算法允许用户在一分钟内生成具有数百万细胞的3D肿瘤。对于突变在整个肿瘤中的分布,SITH提供了交互式图形和汇总图。此外,通过从模拟肿瘤中取样,SITH可以生成合成的大块和单细胞DNA-seq数据集。简化的应用程序编程接口(API)使SITH成为研究空间生长和肿瘤内异质性之间关系的有用工具。SITH是CRAN的一部分,可以通过在R控制台中运行install.packages(“SITH”)来安装。请参阅https://CRAN.R-project.org/package=SITH获取用户手册和软件包说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
An Update on Early-Onset Breast Cancer: Incidence, Risk Factors, Genetic Testing, and Treatment Identification of Crucial Drug Targets and Pathways to Reprogram Drug Resistance Through Epigenetic Modulation in Advanced Lung Cancer Using Integrated Bioinformatics Approach Issue Information EGFR Signaling and Related Pathways: Potential Targets for CRISPR-Mediated Gene Editing System in the Colorectal Cancer Optimization of Immune Checkpoint Blockade via a Multiscale Model System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1