Rong Yi, Lanying Tang, Yuqiu Tian, Jie Liu, Zhihui Wu
{"title":"Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework.","authors":"Rong Yi, Lanying Tang, Yuqiu Tian, Jie Liu, Zhihui Wu","doi":"10.1007/s00521-021-06102-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pneumonia is one of the hazardous diseases that lead to life insecurity. It needs to be diagnosed at the initial stages to prevent a person from more damage and help them save their lives. Various techniques are used to identify pneumonia, including chest X-ray, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Chest X-ray is the most widely used method to diagnose pneumonia and is considered one of the most reliable approaches. To analyse chest X-ray images accurately, an expert radiologist needs expertise and experience in the desired domain. However, human-assisted approaches have some drawbacks: expert availability, treatment cost, availability of diagnostic tools, etc. Hence, the need for an intelligent and automated system comes into place that operates on chest X-ray images and diagnoses pneumonia. The primary purpose of technology is to develop algorithms and tools that assist humans and make their lives easier. This study proposes a scalable and interpretable deep convolutional neural network (DCNN) to identify pneumonia using chest X-ray images. The proposed modified DCNN model first extracts useful features from the images and then classifies them into normal and pneumonia classes. The proposed system has been trained and tested on chest X-ray images dataset. Various performance metrics have been utilized to inspect the stability and efficacy of the proposed model. The experimental result shows that the proposed model's performance is greater compared to the other state-of-the-art methodologies used to identify pneumonia.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 20","pages":"14473-14486"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00521-021-06102-7","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06102-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9
Abstract
Pneumonia is one of the hazardous diseases that lead to life insecurity. It needs to be diagnosed at the initial stages to prevent a person from more damage and help them save their lives. Various techniques are used to identify pneumonia, including chest X-ray, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Chest X-ray is the most widely used method to diagnose pneumonia and is considered one of the most reliable approaches. To analyse chest X-ray images accurately, an expert radiologist needs expertise and experience in the desired domain. However, human-assisted approaches have some drawbacks: expert availability, treatment cost, availability of diagnostic tools, etc. Hence, the need for an intelligent and automated system comes into place that operates on chest X-ray images and diagnoses pneumonia. The primary purpose of technology is to develop algorithms and tools that assist humans and make their lives easier. This study proposes a scalable and interpretable deep convolutional neural network (DCNN) to identify pneumonia using chest X-ray images. The proposed modified DCNN model first extracts useful features from the images and then classifies them into normal and pneumonia classes. The proposed system has been trained and tested on chest X-ray images dataset. Various performance metrics have been utilized to inspect the stability and efficacy of the proposed model. The experimental result shows that the proposed model's performance is greater compared to the other state-of-the-art methodologies used to identify pneumonia.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.