Shantanu Sengupta, Siddharth Biswal, Jitto Titus, Atandra Burman, Keshav Reddy, Mahesh C Fulwani, Aziz Khan, Niteen Deshpande, Smit Shrivastava, Naveena Yanamala, Partho P Sengupta
{"title":"A novel breakthrough in wrist-worn transdermal troponin-I-sensor assessment for acute myocardial infarction.","authors":"Shantanu Sengupta, Siddharth Biswal, Jitto Titus, Atandra Burman, Keshav Reddy, Mahesh C Fulwani, Aziz Khan, Niteen Deshpande, Smit Shrivastava, Naveena Yanamala, Partho P Sengupta","doi":"10.1093/ehjdh/ztad015","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Clinical differentiation of acute myocardial infarction (MI) from unstable angina and other presentations mimicking acute coronary syndromes (ACS) is critical for implementing time-sensitive interventions and optimizing outcomes. However, the diagnostic steps are dependent on blood draws and laboratory turnaround times. We tested the clinical feasibility of a wrist-worn transdermal infrared spectrophotometric sensor (transdermal-ISS) in clinical practice and assessed the performance of a machine learning algorithm for identifying elevated high-sensitivity cardiac troponin-I (hs-cTnI) levels in patients hospitalized with ACS.</p><p><strong>Methods and results: </strong>We enrolled 238 patients hospitalized with ACS at five sites. The final diagnosis of MI (with or without ST elevation) and unstable angina was adjudicated using electrocardiography (ECG), cardiac troponin (cTn) test, echocardiography (regional wall motion abnormality), or coronary angiography. A transdermal-ISS-derived deep learning model was trained (three sites) and externally validated with hs-cTnI (one site) and echocardiography and angiography (two sites), respectively. The transdermal-ISS model predicted elevated hs-cTnI levels with areas under the receiver operator characteristics of 0.90 [95% confidence interval (CI), 0.84-0.94; sensitivity, 0.86; and specificity, 0.82] and 0.92 (95% CI, 0.80-0.98; sensitivity, 0.94; and specificity, 0.64), for internal and external validation cohorts, respectively. In addition, the model predictions were associated with regional wall motion abnormalities [odds ratio (OR), 3.37; CI, 1.02-11.15; <i>P</i> = 0.046] and significant coronary stenosis (OR, 4.69; CI, 1.27-17.26; <i>P</i> = 0.019).</p><p><strong>Conclusion: </strong>A wrist-worn transdermal-ISS is clinically feasible for rapid, bloodless prediction of elevated hs-cTnI levels in real-world settings. It may have a role in establishing a point-of-care biomarker diagnosis of MI and impact triaging patients with suspected ACS.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"4 3","pages":"145-154"},"PeriodicalIF":3.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/b8/ztad015.PMC10232240.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
Aims: Clinical differentiation of acute myocardial infarction (MI) from unstable angina and other presentations mimicking acute coronary syndromes (ACS) is critical for implementing time-sensitive interventions and optimizing outcomes. However, the diagnostic steps are dependent on blood draws and laboratory turnaround times. We tested the clinical feasibility of a wrist-worn transdermal infrared spectrophotometric sensor (transdermal-ISS) in clinical practice and assessed the performance of a machine learning algorithm for identifying elevated high-sensitivity cardiac troponin-I (hs-cTnI) levels in patients hospitalized with ACS.
Methods and results: We enrolled 238 patients hospitalized with ACS at five sites. The final diagnosis of MI (with or without ST elevation) and unstable angina was adjudicated using electrocardiography (ECG), cardiac troponin (cTn) test, echocardiography (regional wall motion abnormality), or coronary angiography. A transdermal-ISS-derived deep learning model was trained (three sites) and externally validated with hs-cTnI (one site) and echocardiography and angiography (two sites), respectively. The transdermal-ISS model predicted elevated hs-cTnI levels with areas under the receiver operator characteristics of 0.90 [95% confidence interval (CI), 0.84-0.94; sensitivity, 0.86; and specificity, 0.82] and 0.92 (95% CI, 0.80-0.98; sensitivity, 0.94; and specificity, 0.64), for internal and external validation cohorts, respectively. In addition, the model predictions were associated with regional wall motion abnormalities [odds ratio (OR), 3.37; CI, 1.02-11.15; P = 0.046] and significant coronary stenosis (OR, 4.69; CI, 1.27-17.26; P = 0.019).
Conclusion: A wrist-worn transdermal-ISS is clinically feasible for rapid, bloodless prediction of elevated hs-cTnI levels in real-world settings. It may have a role in establishing a point-of-care biomarker diagnosis of MI and impact triaging patients with suspected ACS.