Can machine learning unravel unsuspected, clinically important factors predictive of long-term mortality in complex coronary artery disease? A call for 'big data'.
Kai Ninomiya, Shigetaka Kageyama, Scot Garg, Shinichiro Masuda, Nozomi Kotoku, Pruthvi C Revaiah, Neil O'leary, Yoshinobu Onuma, Patrick W Serruys
{"title":"Can machine learning unravel unsuspected, clinically important factors predictive of long-term mortality in complex coronary artery disease? A call for 'big data'.","authors":"Kai Ninomiya, Shigetaka Kageyama, Scot Garg, Shinichiro Masuda, Nozomi Kotoku, Pruthvi C Revaiah, Neil O'leary, Yoshinobu Onuma, Patrick W Serruys","doi":"10.1093/ehjdh/ztad014","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Risk stratification and individual risk prediction play a key role in making treatment decisions in patients with complex coronary artery disease (CAD). The aim of this study was to assess whether machine learning (ML) algorithms can improve discriminative ability and identify unsuspected, but potentially important, factors in the prediction of long-term mortality following percutaneous coronary intervention or coronary artery bypass grafting in patients with complex CAD.</p><p><strong>Methods and results: </strong>To predict long-term mortality, the ML algorisms were applied to the SYNTAXES database with 75 pre-procedural variables including demographic and clinical factors, blood sampling, imaging, and patient-reported outcomes. The discriminative ability and feature importance of the ML model was assessed in the derivation cohort of the SYNTAXES trial using a 10-fold cross-validation approach. The ML model showed an acceptable discrimination (area under the curve = 0.76) in cross-validation. C-reactive protein, patient-reported pre-procedural mental status, gamma-glutamyl transferase, and HbA1c were identified as important variables predicting 10-year mortality.</p><p><strong>Conclusion: </strong>The ML algorithms disclosed unsuspected, but potentially important prognostic factors of very long-term mortality among patients with CAD. A 'mega-analysis' based on large randomized or non-randomized data, the so-called 'big data', may be warranted to confirm these findings.</p><p><strong>Clinical trial registration: </strong>SYNTAXES ClinicalTrials.gov reference: NCT03417050, SYNTAX ClinicalTrials.gov reference: NCT00114972.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"4 3","pages":"275-278"},"PeriodicalIF":3.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/da/ztad014.PMC10232230.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Aims: Risk stratification and individual risk prediction play a key role in making treatment decisions in patients with complex coronary artery disease (CAD). The aim of this study was to assess whether machine learning (ML) algorithms can improve discriminative ability and identify unsuspected, but potentially important, factors in the prediction of long-term mortality following percutaneous coronary intervention or coronary artery bypass grafting in patients with complex CAD.
Methods and results: To predict long-term mortality, the ML algorisms were applied to the SYNTAXES database with 75 pre-procedural variables including demographic and clinical factors, blood sampling, imaging, and patient-reported outcomes. The discriminative ability and feature importance of the ML model was assessed in the derivation cohort of the SYNTAXES trial using a 10-fold cross-validation approach. The ML model showed an acceptable discrimination (area under the curve = 0.76) in cross-validation. C-reactive protein, patient-reported pre-procedural mental status, gamma-glutamyl transferase, and HbA1c were identified as important variables predicting 10-year mortality.
Conclusion: The ML algorithms disclosed unsuspected, but potentially important prognostic factors of very long-term mortality among patients with CAD. A 'mega-analysis' based on large randomized or non-randomized data, the so-called 'big data', may be warranted to confirm these findings.