A varying-coefficient partially linear transformation model for length-biased data with an application to HIV vaccine studies.

Pub Date : 2022-07-11 eCollection Date: 2023-05-01 DOI:10.1515/ijb-2021-0057
Alan T K Wan, Wei Zhao, Peter Gilbert, Yong Zhou
{"title":"A varying-coefficient partially linear transformation model for length-biased data with an application to HIV vaccine studies.","authors":"Alan T K Wan, Wei Zhao, Peter Gilbert, Yong Zhou","doi":"10.1515/ijb-2021-0057","DOIUrl":null,"url":null,"abstract":"<p><p>Prevalent cohort studies in medical research often give rise to length-biased survival data that require special treatments. The recently proposed varying-coefficient partially linear transformation (VCPLT) model has the virtue of providing a more dynamic content of the effects of the covariates on survival times than the well-known partially linear transformation (PLT) model by allowing flexible interactions between the covariates. However, no existing analysis of the VCPLT model has considered length-biased sampling. In this paper, we consider the VCPLT model when the data are length-biased and right censored, thereby extending the reach of this flexible and powerful tool. We develop a martingale estimating function-based approach to the estimation of this model, provide theoretical underpinnings, evaluate finite sample performance via simulations, and showcase its practical appeal via an empirical application using data from two HIV vaccine clinical trials conducted by the U.S. National Institute of Allergy and Infectious Diseases.</p>","PeriodicalId":75022,"journal":{"name":"","volume":"19 1","pages":"131-162"},"PeriodicalIF":0.0,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2021-0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prevalent cohort studies in medical research often give rise to length-biased survival data that require special treatments. The recently proposed varying-coefficient partially linear transformation (VCPLT) model has the virtue of providing a more dynamic content of the effects of the covariates on survival times than the well-known partially linear transformation (PLT) model by allowing flexible interactions between the covariates. However, no existing analysis of the VCPLT model has considered length-biased sampling. In this paper, we consider the VCPLT model when the data are length-biased and right censored, thereby extending the reach of this flexible and powerful tool. We develop a martingale estimating function-based approach to the estimation of this model, provide theoretical underpinnings, evaluate finite sample performance via simulations, and showcase its practical appeal via an empirical application using data from two HIV vaccine clinical trials conducted by the U.S. National Institute of Allergy and Infectious Diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长度偏差数据的变化系数部分线性变换模型,应用于艾滋病疫苗研究。
医学研究中的普遍队列研究经常会产生长度偏差的生存数据,需要进行特殊处理。与众所周知的部分线性变换(PLT)模型相比,最近提出的变化系数部分线性变换(VCPLT)模型允许协变量之间进行灵活的交互作用,从而提供了协变量对生存时间影响的更动态内容。然而,现有的 VCPLT 模型分析都没有考虑长度偏差采样。在本文中,我们考虑了数据有长度偏差和右删减时的 VCPLT 模型,从而扩展了这一灵活而强大的工具的应用范围。我们开发了一种基于马氏估计函数的方法来估计该模型,提供了理论基础,通过模拟评估了有限样本的性能,并利用美国国家过敏症和传染病研究所进行的两项 HIV 疫苗临床试验的数据,通过实证应用展示了该模型的实际吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1