Automated semantic lung segmentation in chest CT images using deep neural network.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2023-04-10 DOI:10.1007/s00521-023-08407-1
M Murugappan, Ali K Bourisly, N B Prakash, M G Sumithra, U Rajendra Acharya
{"title":"Automated semantic lung segmentation in chest CT images using deep neural network.","authors":"M Murugappan, Ali K Bourisly, N B Prakash, M G Sumithra, U Rajendra Acharya","doi":"10.1007/s00521-023-08407-1","DOIUrl":null,"url":null,"abstract":"<p><p>Lung segmentation algorithms play a significant role in segmenting theinfected regions in the lungs. This work aims to develop a computationally efficient and robust deep learning model for lung segmentation using chest computed tomography (CT) images with DeepLabV3 + networks for two-class (background and lung field) and four-class (ground-glass opacities, background, consolidation, and lung field). In this work, we investigate the performance of the DeepLabV3 + network with five pretrained networks: Xception, ResNet-18, Inception-ResNet-v2, MobileNet-v2 and ResNet-50. A publicly available database for COVID-19 that contains 750 chest CT images and corresponding pixel-labeled images are used to develop the deep learning model. The segmentation performance has been assessed using five performance measures: Intersection of Union (IoU), Weighted IoU, Balance F1 score, pixel accu-racy, and global accuracy. The experimental results of this work confirm that the DeepLabV3 + network with ResNet-18 and a batch size of 8 have a higher performance for two-class segmentation. DeepLabV3 + network coupled with ResNet-50 and a batch size of 16 yielded better results for four-class segmentation compared to other pretrained networks. Besides, the ResNet with a fewer number of layers is highly adequate for developing a more robust lung segmentation network with lesser computational complexity compared to the conventional DeepLabV3 + network with Xception. This present work proposes a unified DeepLabV3 + network to delineate the two and four different regions automatically using CT images for CoVID-19 patients. Our developed automated segmented model can be further developed to be used as a clinical diagnosis system for CoVID-19 as well as assist clinicians in providing an accurate second opinion CoVID-19 diagnosis.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08407-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Lung segmentation algorithms play a significant role in segmenting theinfected regions in the lungs. This work aims to develop a computationally efficient and robust deep learning model for lung segmentation using chest computed tomography (CT) images with DeepLabV3 + networks for two-class (background and lung field) and four-class (ground-glass opacities, background, consolidation, and lung field). In this work, we investigate the performance of the DeepLabV3 + network with five pretrained networks: Xception, ResNet-18, Inception-ResNet-v2, MobileNet-v2 and ResNet-50. A publicly available database for COVID-19 that contains 750 chest CT images and corresponding pixel-labeled images are used to develop the deep learning model. The segmentation performance has been assessed using five performance measures: Intersection of Union (IoU), Weighted IoU, Balance F1 score, pixel accu-racy, and global accuracy. The experimental results of this work confirm that the DeepLabV3 + network with ResNet-18 and a batch size of 8 have a higher performance for two-class segmentation. DeepLabV3 + network coupled with ResNet-50 and a batch size of 16 yielded better results for four-class segmentation compared to other pretrained networks. Besides, the ResNet with a fewer number of layers is highly adequate for developing a more robust lung segmentation network with lesser computational complexity compared to the conventional DeepLabV3 + network with Xception. This present work proposes a unified DeepLabV3 + network to delineate the two and four different regions automatically using CT images for CoVID-19 patients. Our developed automated segmented model can be further developed to be used as a clinical diagnosis system for CoVID-19 as well as assist clinicians in providing an accurate second opinion CoVID-19 diagnosis.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度神经网络实现胸部CT图像的自动语义肺分割。
肺部分割算法在分割肺部感染区域方面发挥着重要作用。这项工作旨在开发一种计算高效且稳健的深度学习模型,用于使用DeepLabV3的胸部计算机断层扫描(CT)图像进行肺部分割 + 两类(背景和肺野)和四类(磨玻璃混浊、背景、实变和肺场)的网络。在这项工作中,我们研究了DeepLabV3的性能 + 具有五个预训练网络的网络:Xception、ResNet-18、Inception-ResNet-v2、MobileNet-v2和ResNet-50。新冠肺炎的公开可用数据库包含750张胸部CT图像和相应的像素标记图像,用于开发深度学习模型。使用五种性能指标评估分割性能:并集交集(IoU)、加权IoU、平衡F1分数、像素准确度和全局精度。这项工作的实验结果证实了DeepLabV3 + 具有ResNet-18和批量大小为8的网络对于两类分割具有更高的性能。DeepLabV3 + 与其他预训练的网络相比,与ResNet-50和批量大小为16的网络耦合的网络在四类分割方面产生了更好的结果。此外,与传统的DeepLabV3相比,层数较少的ResNet非常适合开发更健壮的肺部分割网络,计算复杂度更低 + 网络与Xception。本工作提出了一个统一的DeepLabV3 + 网络,以使用新冠肺炎患者的CT图像自动描绘两个和四个不同区域。我们开发的自动化分割模型可以进一步开发,用作新冠肺炎的临床诊断系统,并帮助临床医生提供准确的新冠肺炎第二意见诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1