Rafael Pereira Dos Santos, Lauro Gregianin, André T Brunetto, Mariane da Cunha Jaeger, Algemir Lunardi Brunetto, Caroline Brunetto de Farias, Rafael Roesler
{"title":"Cancer Stem Cells and Chemoresistance in Ewing Sarcoma.","authors":"Rafael Pereira Dos Santos, Lauro Gregianin, André T Brunetto, Mariane da Cunha Jaeger, Algemir Lunardi Brunetto, Caroline Brunetto de Farias, Rafael Roesler","doi":"10.2174/1574888X17666220627114710","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to chemotherapy poses a major challenge for cancer treatment. Reactivating a stem cell program resembling that seen in embryonic development can lead cancer cells to acquire a stem-cell phenotype characterized by expression of stemness genes, pluripotency, high self-renewal ability, and tumor-initiating capability. These cancer stem cells (CSCs) are usually resistant to anticancer drugs and are likely involved in treatment failure in many cancer types. Ewing sarcoma (ES) is a pediatric cancer type typically resulting from a typical genetic alteration affecting bone or soft tissues. Despite advances in treatment, survival prognostic remains poor for patients with refractory or recurrent disease. Here, we review the increasing evidence indicating that ES tumors contain a CSC subpopulation expressing stem cell genes, including BM1, OCT3/4, NANOG, and SOX2, that plays a role in resistance to drug treatment, and current experimental strategies that successfully counteract chemoresistance mediated by CSCs in ES.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":"18 7","pages":"926-936"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X17666220627114710","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Resistance to chemotherapy poses a major challenge for cancer treatment. Reactivating a stem cell program resembling that seen in embryonic development can lead cancer cells to acquire a stem-cell phenotype characterized by expression of stemness genes, pluripotency, high self-renewal ability, and tumor-initiating capability. These cancer stem cells (CSCs) are usually resistant to anticancer drugs and are likely involved in treatment failure in many cancer types. Ewing sarcoma (ES) is a pediatric cancer type typically resulting from a typical genetic alteration affecting bone or soft tissues. Despite advances in treatment, survival prognostic remains poor for patients with refractory or recurrent disease. Here, we review the increasing evidence indicating that ES tumors contain a CSC subpopulation expressing stem cell genes, including BM1, OCT3/4, NANOG, and SOX2, that plays a role in resistance to drug treatment, and current experimental strategies that successfully counteract chemoresistance mediated by CSCs in ES.
期刊介绍:
Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.