Blood platelet RNA profiles do not enable for nivolumab response prediction at baseline in patients with non-small cell lung cancer.

Q3 Biochemistry, Genetics and Molecular Biology Tumor Biology Pub Date : 2024-01-01 DOI:10.3233/TUB-220037
Mirte Muller, Myron G Best, Vincent van der Noort, T Jeroen N Hiltermann, Anna-Larissa N Niemeijer, Edward Post, Nik Sol, Sjors G J G In 't Veld, Tineke Nogarede, Lisanne Visser, Robert D Schouten, Daan van den Broek, Karlijn Hummelink, Kim Monkhorst, Adrianus J de Langen, Ed Schuuring, Egbert F Smit, Harry J M Groen, Thomas Wurdinger, Michel M van den Heuvel
{"title":"Blood platelet RNA profiles do not enable for nivolumab response prediction at baseline in patients with non-small cell lung cancer.","authors":"Mirte Muller, Myron G Best, Vincent van der Noort, T Jeroen N Hiltermann, Anna-Larissa N Niemeijer, Edward Post, Nik Sol, Sjors G J G In 't Veld, Tineke Nogarede, Lisanne Visser, Robert D Schouten, Daan van den Broek, Karlijn Hummelink, Kim Monkhorst, Adrianus J de Langen, Ed Schuuring, Egbert F Smit, Harry J M Groen, Thomas Wurdinger, Michel M van den Heuvel","doi":"10.3233/TUB-220037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anti-PD-(L)1 immunotherapy has emerged as a promising treatment approach for non-small cell lung cancer (NSCLC), though the response rates remain low. Pre-treatment response prediction may improve patient allocation for immunotherapy. Blood platelets act as active immune-like cells, thereby constraining T-cell activity, propagating cancer metastasis, and adjusting their spliced mRNA content.</p><p><strong>Objective: </strong>We investigated whether platelet RNA profiles before start of nivolumab anti-PD1 immunotherapy may predict treatment responses.</p><p><strong>Methods: </strong>We performed RNA-sequencing of platelet RNA samples isolated from stage III-IV NSCLC patients before treatment with nivolumab. Treatment response was scored by the RECIST-criteria. Data were analyzed using a predefined thromboSeq analysis including a particle-swarm-enhanced support vector machine (PSO/SVM) classification algorithm.</p><p><strong>Results: </strong>We collected and processed a 286-samples cohort, separated into a training/evaluation and validation series and subjected those to training of the PSO/SVM-classification algorithm. We observed only low classification accuracy in the 107-samples validation series (area under the curve (AUC) training series: 0.73 (95% -CI: 0.63-0.84, n = 88 samples), AUC evaluation series: 0.64 (95% -CI: 0.51-0.76, n = 91 samples), AUC validation series: 0.58 (95% -CI: 0.45-0.70, n = 107 samples)), employing a five-RNAs biomarker panel.</p><p><strong>Conclusions: </strong>We concluded that platelet RNA may have minimally discriminative capacity for anti-PD1 nivolumab response prediction, with which the current methodology is insufficient for diagnostic application.</p>","PeriodicalId":23364,"journal":{"name":"Tumor Biology","volume":" ","pages":"S327-S340"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/TUB-220037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Anti-PD-(L)1 immunotherapy has emerged as a promising treatment approach for non-small cell lung cancer (NSCLC), though the response rates remain low. Pre-treatment response prediction may improve patient allocation for immunotherapy. Blood platelets act as active immune-like cells, thereby constraining T-cell activity, propagating cancer metastasis, and adjusting their spliced mRNA content.

Objective: We investigated whether platelet RNA profiles before start of nivolumab anti-PD1 immunotherapy may predict treatment responses.

Methods: We performed RNA-sequencing of platelet RNA samples isolated from stage III-IV NSCLC patients before treatment with nivolumab. Treatment response was scored by the RECIST-criteria. Data were analyzed using a predefined thromboSeq analysis including a particle-swarm-enhanced support vector machine (PSO/SVM) classification algorithm.

Results: We collected and processed a 286-samples cohort, separated into a training/evaluation and validation series and subjected those to training of the PSO/SVM-classification algorithm. We observed only low classification accuracy in the 107-samples validation series (area under the curve (AUC) training series: 0.73 (95% -CI: 0.63-0.84, n = 88 samples), AUC evaluation series: 0.64 (95% -CI: 0.51-0.76, n = 91 samples), AUC validation series: 0.58 (95% -CI: 0.45-0.70, n = 107 samples)), employing a five-RNAs biomarker panel.

Conclusions: We concluded that platelet RNA may have minimally discriminative capacity for anti-PD1 nivolumab response prediction, with which the current methodology is insufficient for diagnostic application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在非小细胞肺癌患者基线时,血小板 RNA 图谱无法预测 nivolumab 的反应。
背景:抗-PD-(L)1免疫疗法已成为治疗非小细胞肺癌(NSCLC)的一种很有前景的方法,但反应率仍然很低。治疗前反应预测可改善免疫疗法的患者分配。血小板作为活跃的免疫样细胞,可限制T细胞活性、促进癌症转移并调整其剪接的mRNA含量:我们研究了在开始使用尼伐单抗抗PD1免疫疗法前血小板RNA谱是否可以预测治疗反应:我们对尼伐单抗治疗前从III-IV期NSCLC患者体内分离的血小板RNA样本进行了RNA测序。治疗反应按照RECIST标准进行评分。数据分析采用预定义的thromboSeq分析,包括粒子群增强支持向量机(PSO/SVM)分类算法:我们收集并处理了286个样本群,将其分为训练/评估和验证系列,并对这些样本进行了PSO/SVM分类算法训练。在 107 个样本的验证序列中,我们只观察到了较低的分类准确率(训练序列的曲线下面积(AUC)为 0.73 (95% -C: 0.73)):0.73 (95% -CI: 0.63-0.84, n = 88 个样本),AUC 评估系列:0.64 (95% -CI: 0.63-0.84, n = 88 个样本):0.64 (95% -CI: 0.51-0.76, n = 91 个样本),AUC 验证系列:结论:我们得出结论:血小板 RNA 对抗 PD1 nivolumab 反应预测的分辨能力可能微乎其微,目前的方法不足以用于诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tumor Biology
Tumor Biology 医学-肿瘤学
CiteScore
5.40
自引率
0.00%
发文量
18
审稿时长
1 months
期刊介绍: Tumor Biology is a peer reviewed, international journal providing an open access forum for experimental and clinical cancer research. Tumor Biology covers all aspects of tumor markers, molecular biomarkers, tumor targeting, and mechanisms of tumor development and progression. Specific topics of interest include, but are not limited to: Pathway analyses, Non-coding RNAs, Circulating tumor cells, Liquid biopsies, Exosomes, Epigenetics, Cancer stem cells, Tumor immunology and immunotherapy, Tumor microenvironment, Targeted therapies, Therapy resistance Cancer genetics, Cancer risk screening. Studies in other areas of basic, clinical and translational cancer research are also considered in order to promote connections and discoveries across different disciplines. The journal publishes original articles, reviews, commentaries and guidelines on tumor marker use. All submissions are subject to rigorous peer review and are selected on the basis of whether the research is sound and deserves publication. Tumor Biology is the Official Journal of the International Society of Oncology and BioMarkers (ISOBM).
期刊最新文献
Blood platelet RNA profiles do not enable for nivolumab response prediction at baseline in patients with non-small cell lung cancer. Pre-analytical stability of the CEA, CYFRA 21.1, NSE, CA125 and HE4 tumor markers. Clinical perspectives on serum tumor marker use in predicting prognosis and treatment response in advanced non-small cell lung cancer. Screening approaches for lung cancer by blood-based biomarkers: Challenges and opportunities. Serum tumor markers for response prediction and monitoring of advanced lung cancer: A review focusing on immunotherapy and targeted therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1