{"title":"Molecular mechanisms of AMPAR reversible stabilization at synapses","authors":"Diogo Bessa-Neto , Daniel Choquet","doi":"10.1016/j.mcn.2023.103856","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In the central nervous system<span><span>, glutamatergic synapses play a central role in the regulation of excitatory neuronal transmission. With the membrane-associated </span>guanylate kinase (MAGUK) family of proteins as their structuring scaffold, glutamatergic receptors serve as the powerhouse of glutamatergic synapses. Glutamatergic receptors can be categorized as metabotropic and </span></span>ionotropic receptors. The latter are then categorized into </span><em>N</em>-methyl-<span>d</span><span>-aspartate, kainate receptors<span>, and α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid receptors (AMPARs). Over the past two decades, genetic<span> tagging technology and super-resolution microscopy have been of the utmost importance to unravel how the different receptors are organized at glutamatergic synapses. At the plasma membrane, receptors are highly mobile but show reduced mobility when at synaptic sites. This partial immobilization of receptors at synaptic sites is attributed to the stabilization/anchoring of receptors with the postsynaptic MAGUK<span> proteins and auxiliary proteins, and presynaptic proteins. These partial immobilizations and localization of glutamatergic receptors within the synaptic sites are fundamental for proper basal transmission and synaptic plasticity<span>. Perturbations of the stabilization of glutamatergic receptors are often associated with cognitive deficits. In this review, we describe the proposed mechanisms for synaptic localization and stabilization of AMPARs, the major players of fast excitatory transmission in the central nervous system.</span></span></span></span></span></p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"125 ","pages":"Article 103856"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743123000507","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
In the central nervous system, glutamatergic synapses play a central role in the regulation of excitatory neuronal transmission. With the membrane-associated guanylate kinase (MAGUK) family of proteins as their structuring scaffold, glutamatergic receptors serve as the powerhouse of glutamatergic synapses. Glutamatergic receptors can be categorized as metabotropic and ionotropic receptors. The latter are then categorized into N-methyl-d-aspartate, kainate receptors, and α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid receptors (AMPARs). Over the past two decades, genetic tagging technology and super-resolution microscopy have been of the utmost importance to unravel how the different receptors are organized at glutamatergic synapses. At the plasma membrane, receptors are highly mobile but show reduced mobility when at synaptic sites. This partial immobilization of receptors at synaptic sites is attributed to the stabilization/anchoring of receptors with the postsynaptic MAGUK proteins and auxiliary proteins, and presynaptic proteins. These partial immobilizations and localization of glutamatergic receptors within the synaptic sites are fundamental for proper basal transmission and synaptic plasticity. Perturbations of the stabilization of glutamatergic receptors are often associated with cognitive deficits. In this review, we describe the proposed mechanisms for synaptic localization and stabilization of AMPARs, the major players of fast excitatory transmission in the central nervous system.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.