{"title":"Defect detection of gear parts in virtual manufacturing.","authors":"Zhenxing Xu, Aizeng Wang, Fei Hou, Gang Zhao","doi":"10.1186/s42492-023-00133-8","DOIUrl":null,"url":null,"abstract":"<p><p>Gears play an important role in virtual manufacturing systems for digital twins; however, the image of gear tooth defects is difficult to acquire owing to its non-convex shape. In this study, a deep learning network is proposed to detect gear defects based on their point cloud representation. This approach mainly consists of three steps: (1) Various types of gear defects are classified into four cases (fracture, pitting, glue, and wear); A 3D gear dataset was constructed with 10000 instances following the aforementioned classification. (2) Gear-PCNet+ + introduces a novel Combinational Convolution Block, proposed based on the gear dataset for gear defect detection to effectively extract the local gear information and identify its complex topology; (3) Compared with other methods, experiments show that this method can achieve better recognition results for gear defects with higher efficiency and practicability.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"6 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060497/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-023-00133-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2
Abstract
Gears play an important role in virtual manufacturing systems for digital twins; however, the image of gear tooth defects is difficult to acquire owing to its non-convex shape. In this study, a deep learning network is proposed to detect gear defects based on their point cloud representation. This approach mainly consists of three steps: (1) Various types of gear defects are classified into four cases (fracture, pitting, glue, and wear); A 3D gear dataset was constructed with 10000 instances following the aforementioned classification. (2) Gear-PCNet+ + introduces a novel Combinational Convolution Block, proposed based on the gear dataset for gear defect detection to effectively extract the local gear information and identify its complex topology; (3) Compared with other methods, experiments show that this method can achieve better recognition results for gear defects with higher efficiency and practicability.