An automatic improved facial expression recognition for masked faces.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2023-04-01 DOI:10.1007/s00521-023-08498-w
Yasmeen ELsayed, Ashraf ELSayed, Mohamed A Abdou
{"title":"An automatic improved facial expression recognition for masked faces.","authors":"Yasmeen ELsayed,&nbsp;Ashraf ELSayed,&nbsp;Mohamed A Abdou","doi":"10.1007/s00521-023-08498-w","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic facial expression recognition (AFER), sometimes referred to as emotional recognition, is important for socializing. Automatic methods in the past two years faced challenges due to Covid-19 and the vital wearing of a mask. Machine learning techniques tremendously increase the amount of data processed and achieved good results in such AFER to detect emotions; however, those techniques are not designed for masked faces and thus achieved poor recognition. This paper introduces a hybrid convolutional neural network aided by a local binary pattern to extract features in an accurate way, especially for masked faces. The basic seven emotions classified into anger, happiness, sadness, surprise, contempt, disgust, and fear are to be recognized. The proposed method is applied on two datasets: the first represents CK and CK +, while the second represents M-LFW-FER. Obtained results show that emotion recognition with a face mask achieved an accuracy of 70.76% on three emotions. Results are compared to existing techniques and show significant improvement.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 20","pages":"14963-14972"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067009/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08498-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Automatic facial expression recognition (AFER), sometimes referred to as emotional recognition, is important for socializing. Automatic methods in the past two years faced challenges due to Covid-19 and the vital wearing of a mask. Machine learning techniques tremendously increase the amount of data processed and achieved good results in such AFER to detect emotions; however, those techniques are not designed for masked faces and thus achieved poor recognition. This paper introduces a hybrid convolutional neural network aided by a local binary pattern to extract features in an accurate way, especially for masked faces. The basic seven emotions classified into anger, happiness, sadness, surprise, contempt, disgust, and fear are to be recognized. The proposed method is applied on two datasets: the first represents CK and CK +, while the second represents M-LFW-FER. Obtained results show that emotion recognition with a face mask achieved an accuracy of 70.76% on three emotions. Results are compared to existing techniques and show significant improvement.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于蒙面人脸的自动改进的面部表情识别。
自动面部表情识别(AFER),有时被称为情绪识别,对社交很重要。由于新冠肺炎和至关重要的口罩佩戴,自动方法在过去两年面临挑战。机器学习技术极大地增加了处理的数据量,并在检测情绪的AFER中取得了良好的效果;然而,这些技术并不是为蒙面人脸设计的,因此识别效果较差。本文介绍了一种由局部二进制模式辅助的混合卷积神经网络,以精确的方式提取特征,特别是对于蒙面人脸。基本的七种情绪分为愤怒、快乐、悲伤、惊讶、蔑视、厌恶和恐惧。所提出的方法应用于两个数据集:第一个表示CK和CK+,而第二个表示M-LFW-FER。结果表明,使用面罩进行情绪识别对三种情绪的准确率为70.76%。将结果与现有技术进行比较,并显示出显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1