Evaluation of Implant Body Diameter, Platform Diameter, and the Use of a Transepithelial Component on Implant-Abutment Connection Microgap: An In Vitro Study with In Situ Hard X-Ray Radiography.
Mikel Armentia, Mikel Abasolo, Ibai Coria, Simon Zabler
{"title":"Evaluation of Implant Body Diameter, Platform Diameter, and the Use of a Transepithelial Component on Implant-Abutment Connection Microgap: An In Vitro Study with In Situ Hard X-Ray Radiography.","authors":"Mikel Armentia, Mikel Abasolo, Ibai Coria, Simon Zabler","doi":"10.11607/jomi.9855","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the effect of implant body diameter, platform diameter, and the use of transepithelial components on implant-abutment connection (IAC) microgap width.</p><p><strong>Materials and methods: </strong>In total, 16 tests were performed on four commercial dental restoration models (BTI Biotechnology Institute). Different static loads were applied to the embedded implants according to the International Organization for Standardization (ISO) 14801, using a customized loading device. Measurements of the microgap were taken by means of highly magnified x-ray projection in situ in a micro-CT scanner. Regression models were obtained and compared through an analysis of covariance (ANCOVA). To quantify the effect of each variable, t tests (α = .05) of experimental results were performed.</p><p><strong>Results: </strong>Under 400 N, using a transepithelial component for the dental restoration, the microgap width was reduced by 20% (<i>P</i> = .044). Meanwhile, a 22% microgap reduction was observed when the implant body diameter was increased by 1 mm (<i>P</i> = .024). Finally, increasing the platform diameter by 1.4 mm led to a microgap reduction of 54% (<i>P</i> = .001).</p><p><strong>Conclusion: </strong>The use of a transepithelial component in dental restorations reduces the microgap width in IACs. Furthermore, given sufficient space for the implantation, larger implant bodies and platform diameters can also be used for this purpose. Int J Oral Maxillofac Implants 2023;38:489-495. doi: 10.11607/jomi.9855.</p>","PeriodicalId":50298,"journal":{"name":"International Journal of Oral & Maxillofacial Implants","volume":"38 3","pages":"489-495"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral & Maxillofacial Implants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/jomi.9855","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the effect of implant body diameter, platform diameter, and the use of transepithelial components on implant-abutment connection (IAC) microgap width.
Materials and methods: In total, 16 tests were performed on four commercial dental restoration models (BTI Biotechnology Institute). Different static loads were applied to the embedded implants according to the International Organization for Standardization (ISO) 14801, using a customized loading device. Measurements of the microgap were taken by means of highly magnified x-ray projection in situ in a micro-CT scanner. Regression models were obtained and compared through an analysis of covariance (ANCOVA). To quantify the effect of each variable, t tests (α = .05) of experimental results were performed.
Results: Under 400 N, using a transepithelial component for the dental restoration, the microgap width was reduced by 20% (P = .044). Meanwhile, a 22% microgap reduction was observed when the implant body diameter was increased by 1 mm (P = .024). Finally, increasing the platform diameter by 1.4 mm led to a microgap reduction of 54% (P = .001).
Conclusion: The use of a transepithelial component in dental restorations reduces the microgap width in IACs. Furthermore, given sufficient space for the implantation, larger implant bodies and platform diameters can also be used for this purpose. Int J Oral Maxillofac Implants 2023;38:489-495. doi: 10.11607/jomi.9855.
期刊介绍:
Edited by Steven E. Eckert, DDS, MS ISSN (Print): 0882-2786
ISSN (Online): 1942-4434
This highly regarded, often-cited journal integrates clinical and scientific data to improve methods and results of oral and maxillofacial implant therapy. It presents pioneering research, technology, clinical applications, reviews of the literature, seminal studies, emerging technology, position papers, and consensus studies, as well as the many clinical and therapeutic innovations that ensue as a result of these efforts. The editorial board is composed of recognized opinion leaders in their respective areas of expertise and reflects the international reach of the journal. Under their leadership, JOMI maintains its strong scientific integrity while expanding its influence within the field of implant dentistry. JOMI’s popular regular feature "Thematic Abstract Review" presents a review of abstracts of recently published articles on a specific topical area of interest each issue.