Xinbo Qiao , Yixiao Zhang , Zhan Zhang , Nan Niu , Haonan Li , Lisha Sun , Qingtian Ma , Jiawen Bu , Jinchi Liu , Guanglei Chen , Jinqi Xue , Yongliang Yang , Caigang Liu
{"title":"KCNJ15 deficiency promotes drug resistance via affecting the function of lysosomes","authors":"Xinbo Qiao , Yixiao Zhang , Zhan Zhang , Nan Niu , Haonan Li , Lisha Sun , Qingtian Ma , Jiawen Bu , Jinchi Liu , Guanglei Chen , Jinqi Xue , Yongliang Yang , Caigang Liu","doi":"10.1016/j.ajps.2023.100814","DOIUrl":null,"url":null,"abstract":"<div><p>The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients. V-ATPase, an ATP-driven proton pump positioned at lysosomal surfaces, is responsible for maintaining the stability of lysosome. Herein, we reported that the potassium voltage-gated channel subfamily J member 15 (KCNJ15) protein, which may bind to V-ATPase, can regulate the function of lysosome. The deficiency of KCNJ15 protein in breast cancer cells led to drug aggregation as well as reduction of drug efficacy. The application of the V-ATPase inhibitor could inhibit the binding between KCNJ15 and V-ATPase, contributing to the amelioration of drug resistance. Clinical data analysis revealed that KCNJ15 deficiency was associated with higher histological grading, advanced stages, more metastases of lymph nodes, and shorter disease free survival of patients with breast cancer. KCNJ15 expression level is positively correlated with a high response rate after receiving neoadjuvant chemotherapy. Moreover, we revealed that the small molecule drug CMA/BAF can reverse drug resistance by disrupting the interaction between KCNJ15 and lysosomes. In conclusion, KCNJ15 could be identified as an underlying indicator for drug resistance and survival of breast cancer, which might guide the choice of therapeutic strategies.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100814"},"PeriodicalIF":10.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/27/main.PMC10238847.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000417","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients. V-ATPase, an ATP-driven proton pump positioned at lysosomal surfaces, is responsible for maintaining the stability of lysosome. Herein, we reported that the potassium voltage-gated channel subfamily J member 15 (KCNJ15) protein, which may bind to V-ATPase, can regulate the function of lysosome. The deficiency of KCNJ15 protein in breast cancer cells led to drug aggregation as well as reduction of drug efficacy. The application of the V-ATPase inhibitor could inhibit the binding between KCNJ15 and V-ATPase, contributing to the amelioration of drug resistance. Clinical data analysis revealed that KCNJ15 deficiency was associated with higher histological grading, advanced stages, more metastases of lymph nodes, and shorter disease free survival of patients with breast cancer. KCNJ15 expression level is positively correlated with a high response rate after receiving neoadjuvant chemotherapy. Moreover, we revealed that the small molecule drug CMA/BAF can reverse drug resistance by disrupting the interaction between KCNJ15 and lysosomes. In conclusion, KCNJ15 could be identified as an underlying indicator for drug resistance and survival of breast cancer, which might guide the choice of therapeutic strategies.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.