{"title":"Responsible research practices could be more strongly endorsed by Australian university codes of research conduct.","authors":"Yi Kai Ong, Kay L Double, Lisa Bero, Joanna Diong","doi":"10.1186/s41073-023-00129-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to investigate how strongly Australian university codes of research conduct endorse responsible research practices.</p><p><strong>Methods: </strong>Codes of research conduct from 25 Australian universities active in health and medical research were obtained from public websites, and audited against 19 questions to assess how strongly they (1) defined research integrity, research quality, and research misconduct, (2) required research to be approved by an appropriate ethics committee, (3) endorsed 9 responsible research practices, and (4) discouraged 5 questionable research practices.</p><p><strong>Results: </strong>Overall, a median of 10 (IQR 9 to 12) of 19 practices covered in the questions were mentioned, weakly endorsed, or strongly endorsed. Five to 8 of 9 responsible research practices were mentioned, weakly, or strongly endorsed, and 3 questionable research practices were discouraged. Results are stratified by Group of Eight (n = 8) and other (n = 17) universities. Specifically, (1) 6 (75%) Group of Eight and 11 (65%) other codes of research conduct defined research integrity, 4 (50%) and 8 (47%) defined research quality, and 7 (88%) and 16 (94%) defined research misconduct. (2) All codes required ethics approval for human and animal research. (3) All codes required conflicts of interest to be declared, but there was variability in how strongly other research practices were endorsed. The most commonly endorsed practices were ensuring researcher training in research integrity [8 (100%) and 16 (94%)] and making study data publicly available [6 (75%) and 12 (71%)]. The least commonly endorsed practices were making analysis code publicly available [0 (0%) and 0 (0%)] and registering analysis protocols [0 (0%) and 1 (6%)]. (4) Most codes discouraged fabricating data [5 (63%) and 15 (88%)], selectively deleting or modifying data [5 (63%) and 15 (88%)], and selective reporting of results [3 (38%) and 15 (88%)]. No codes discouraged p-hacking or hypothesising after results are known.</p><p><strong>Conclusions: </strong>Responsible research practices could be more strongly endorsed by Australian university codes of research conduct. Our findings may not be generalisable to smaller universities, or those not active in health and medical research.</p>","PeriodicalId":74682,"journal":{"name":"Research integrity and peer review","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242962/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research integrity and peer review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41073-023-00129-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ETHICS","Score":null,"Total":0}
引用次数: 1
Abstract
Background: This study aimed to investigate how strongly Australian university codes of research conduct endorse responsible research practices.
Methods: Codes of research conduct from 25 Australian universities active in health and medical research were obtained from public websites, and audited against 19 questions to assess how strongly they (1) defined research integrity, research quality, and research misconduct, (2) required research to be approved by an appropriate ethics committee, (3) endorsed 9 responsible research practices, and (4) discouraged 5 questionable research practices.
Results: Overall, a median of 10 (IQR 9 to 12) of 19 practices covered in the questions were mentioned, weakly endorsed, or strongly endorsed. Five to 8 of 9 responsible research practices were mentioned, weakly, or strongly endorsed, and 3 questionable research practices were discouraged. Results are stratified by Group of Eight (n = 8) and other (n = 17) universities. Specifically, (1) 6 (75%) Group of Eight and 11 (65%) other codes of research conduct defined research integrity, 4 (50%) and 8 (47%) defined research quality, and 7 (88%) and 16 (94%) defined research misconduct. (2) All codes required ethics approval for human and animal research. (3) All codes required conflicts of interest to be declared, but there was variability in how strongly other research practices were endorsed. The most commonly endorsed practices were ensuring researcher training in research integrity [8 (100%) and 16 (94%)] and making study data publicly available [6 (75%) and 12 (71%)]. The least commonly endorsed practices were making analysis code publicly available [0 (0%) and 0 (0%)] and registering analysis protocols [0 (0%) and 1 (6%)]. (4) Most codes discouraged fabricating data [5 (63%) and 15 (88%)], selectively deleting or modifying data [5 (63%) and 15 (88%)], and selective reporting of results [3 (38%) and 15 (88%)]. No codes discouraged p-hacking or hypothesising after results are known.
Conclusions: Responsible research practices could be more strongly endorsed by Australian university codes of research conduct. Our findings may not be generalisable to smaller universities, or those not active in health and medical research.