Fresh perspectives on an established technique: Pulsed amplitude modulation chlorophyll a fluorescence.

Q3 Agricultural and Biological Sciences Plant-environment interactions (Hoboken, N.J.) Pub Date : 2022-04-01 DOI:10.1002/pei3.10073
Guanqiang Zuo, Robert M Aiken, Naijie Feng, Dianfeng Zheng, Haidong Zhao, Thomas J Avenson, Xiaomao Lin
{"title":"Fresh perspectives on an established technique: Pulsed amplitude modulation chlorophyll <i>a</i> fluorescence.","authors":"Guanqiang Zuo,&nbsp;Robert M Aiken,&nbsp;Naijie Feng,&nbsp;Dianfeng Zheng,&nbsp;Haidong Zhao,&nbsp;Thomas J Avenson,&nbsp;Xiaomao Lin","doi":"10.1002/pei3.10073","DOIUrl":null,"url":null,"abstract":"<p><p>Pulsed amplitude modulation (PAM) chlorophyll <i>a</i> fluorescence provides information about photosynthetic energy transduction. When reliably measured, chlorophyll <i>a</i> fluorescence provides detailed information about critical in vivo photosynthetic processes. Such information has recently provided novel and critical insights into how the yield potential of crops can be improved and it is being used to understand remotely sensed fluorescence, which is termed solar-induced fluorescence and will be solely measured by a satellite scheduled to be launched this year. While PAM chlorophyll <i>a</i> fluorometers measure fluorescence intensity <i>per se</i>, herein we articulate the axiomatic criteria by which instrumentally detected intensities can be assumed to assess <i>fluorescence yield</i>, a phenomenon quite different than fluorescence intensity and one that provides critical insight about how solar energy is variably partitioned into the biosphere. An integrated mathematical, phenomenological, and practical discussion of many useful chlorophyll <i>a</i> fluorescence parameters is presented. We draw attention to, and provide examples of, potential uncertainties that can result from incorrect methodological practices and potentially problematic instrumental design features. Fundamentals of fluorescence measurements are discussed, including the major assumptions underlying the signals and the methodological caveats about taking measurements during both dark- and light-adapted conditions. Key fluorescence parameters are discussed in the context of recent applications under environmental stress. Nuanced information that can be gleaned from intra-comparisons of fluorescence-derived parameters and intercomparisons of fluorescence-derived parameters with those based on other techniques is elucidated.</p>","PeriodicalId":74457,"journal":{"name":"Plant-environment interactions (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168060/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant-environment interactions (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pei3.10073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Pulsed amplitude modulation (PAM) chlorophyll a fluorescence provides information about photosynthetic energy transduction. When reliably measured, chlorophyll a fluorescence provides detailed information about critical in vivo photosynthetic processes. Such information has recently provided novel and critical insights into how the yield potential of crops can be improved and it is being used to understand remotely sensed fluorescence, which is termed solar-induced fluorescence and will be solely measured by a satellite scheduled to be launched this year. While PAM chlorophyll a fluorometers measure fluorescence intensity per se, herein we articulate the axiomatic criteria by which instrumentally detected intensities can be assumed to assess fluorescence yield, a phenomenon quite different than fluorescence intensity and one that provides critical insight about how solar energy is variably partitioned into the biosphere. An integrated mathematical, phenomenological, and practical discussion of many useful chlorophyll a fluorescence parameters is presented. We draw attention to, and provide examples of, potential uncertainties that can result from incorrect methodological practices and potentially problematic instrumental design features. Fundamentals of fluorescence measurements are discussed, including the major assumptions underlying the signals and the methodological caveats about taking measurements during both dark- and light-adapted conditions. Key fluorescence parameters are discussed in the context of recent applications under environmental stress. Nuanced information that can be gleaned from intra-comparisons of fluorescence-derived parameters and intercomparisons of fluorescence-derived parameters with those based on other techniques is elucidated.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对已建立技术的新观点:脉冲振幅调制叶绿素a荧光。
脉冲振幅调制(PAM)叶绿素a荧光提供光合能量转导的信息。当可靠测量时,叶绿素a荧光提供了体内关键光合过程的详细信息。这些信息最近为如何提高作物产量潜力提供了新颖和关键的见解,并被用于了解遥感荧光,这种荧光被称为太阳诱导荧光,将由计划于今年发射的一颗卫星单独测量。虽然PAM叶绿素a荧光计测量荧光强度本身,在这里,我们阐明了不言自明的标准,通过仪器检测强度可以假设评估荧光产量,这是一种与荧光强度完全不同的现象,并且提供了关于太阳能如何在生物圈中变量分配的关键见解。综合数学,现象学和实际讨论了许多有用的叶绿素a荧光参数。我们提请注意,并提供例子,潜在的不确定性可能导致不正确的方法实践和潜在的有问题的仪器设计特点。讨论了荧光测量的基本原理,包括信号的主要假设和在黑暗和光适应条件下进行测量的方法学警告。主要的荧光参数讨论了最近在环境胁迫下的应用。从荧光衍生参数的内部比较和荧光衍生参数与基于其他技术的参数的相互比较中可以收集到的细微信息被阐明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Leaf functional traits of Parrotia subaequalis from different environments in eastern China. Storable, neglected, and underutilized species of Southern Africa for greater agricultural resilience. Characterization of finger millet extracts and evaluation of their nematicidal efficacy and plant growth promotion potential. Impact of seasonality and forest stand age on ion deposition in rehabilitated forests. Soybean pod shattering resistance allele pdh1 and marker-assisted selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1