Ferroptosis and its emerging role in tumor.

Xiaoxuan Wang, Zicheng Liu, Lijuan Ma, Haijie Yu
{"title":"Ferroptosis and its emerging role in tumor.","authors":"Xiaoxuan Wang,&nbsp;Zicheng Liu,&nbsp;Lijuan Ma,&nbsp;Haijie Yu","doi":"10.52601/bpr.2021.210010","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a novel form of programmed cell death characterized by iron-dependent lipid peroxidation accumulation. It is morphologically, biochemically, and genetically distinct from other known cell death, such as apoptosis, necrosis, and pyroptosis. Its regulatory mechanisms include iron metabolism, fatty acid metabolism, mitochondrial respiration, and antioxidative systems eliminating lipid peroxidation, such as glutathione synthesis, selenium-dependent glutathione peroxidase 4, and ubiquinone. The disruption of cellular redox systems causes damage to the cellular membrane leading to ferroptotic cell death. Recent studies have shown that numerous pathological diseases, like tumors, neurodegenerative disorders, and ischemia-reperfusion injury are associated with ferroptosis. As such, pharmacological regulation of ferroptosis either by activation or by suppression will provide a vast potential for treatments of relevant diseases. This review will discuss the advanced progress in ferroptosis and its regulatory mechanisms from both the antioxidative and oxidative sides. In addition, the roles of ferroptosis in various tumorigenesis, development, and therapeutic strategies will be addressed, particularly to chemotherapy and immunotherapy, as well as the discoveries from Traditional Chinese Medicine. This review will lead us to have a comprehensive understanding of the future exploration of ferroptosis and cancer therapy.</p>","PeriodicalId":59621,"journal":{"name":"生物物理学报:英文版","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233469/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报:英文版","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2021.210010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ferroptosis is a novel form of programmed cell death characterized by iron-dependent lipid peroxidation accumulation. It is morphologically, biochemically, and genetically distinct from other known cell death, such as apoptosis, necrosis, and pyroptosis. Its regulatory mechanisms include iron metabolism, fatty acid metabolism, mitochondrial respiration, and antioxidative systems eliminating lipid peroxidation, such as glutathione synthesis, selenium-dependent glutathione peroxidase 4, and ubiquinone. The disruption of cellular redox systems causes damage to the cellular membrane leading to ferroptotic cell death. Recent studies have shown that numerous pathological diseases, like tumors, neurodegenerative disorders, and ischemia-reperfusion injury are associated with ferroptosis. As such, pharmacological regulation of ferroptosis either by activation or by suppression will provide a vast potential for treatments of relevant diseases. This review will discuss the advanced progress in ferroptosis and its regulatory mechanisms from both the antioxidative and oxidative sides. In addition, the roles of ferroptosis in various tumorigenesis, development, and therapeutic strategies will be addressed, particularly to chemotherapy and immunotherapy, as well as the discoveries from Traditional Chinese Medicine. This review will lead us to have a comprehensive understanding of the future exploration of ferroptosis and cancer therapy.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脱铁症及其在肿瘤中的新作用。
脱铁症是一种新型的程序性细胞死亡,其特征是铁依赖性脂质过氧化积累。它在形态、生化和遗传学上与其他已知的细胞死亡不同,如细胞凋亡、坏死和焦下垂。其调节机制包括铁代谢、脂肪酸代谢、线粒体呼吸和消除脂质过氧化的抗氧化系统,如谷胱甘肽合成、硒依赖性谷胱甘肽过氧化物酶4和泛醌。细胞氧化还原系统的破坏导致细胞膜损伤,导致脱铁细胞死亡。最近的研究表明,许多病理性疾病,如肿瘤、神经退行性疾病和缺血再灌注损伤,都与脱铁症有关。因此,通过激活或抑制对脱铁性贫血的药理学调节将为治疗相关疾病提供巨大的潜力。本文将从抗氧化和氧化两个方面讨论脱铁性贫血的研究进展及其调控机制。此外,还将讨论脱铁性贫血在各种肿瘤发生、发展和治疗策略中的作用,特别是化疗和免疫疗法,以及中医药的发现。这篇综述将使我们对脱铁症和癌症治疗的未来探索有一个全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
117
期刊最新文献
Multi-phase separation in mitochondrial nucleoids and eukaryotic nuclei. Synergistic glycolysis disturbance for cancer therapy by a MOF-based nanospoiler. M6A RNA methylation modification and tumor immune microenvironment in lung adenocarcinoma. Antioxidant activity of the thioredoxin system. The risk model construction of the genes regulated by H3K36me3 and H3K79me2 in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1