Molecular pathology and therapeutics of the diabetic foot ulcer; comprehensive reviews.

IF 2.5 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Archives of Physiology and Biochemistry Pub Date : 2024-10-01 Epub Date: 2023-06-09 DOI:10.1080/13813455.2023.2219863
Mansi Patel, Vaibhav Patel, Umang Shah, Alkeshkumar Patel
{"title":"Molecular pathology and therapeutics of the diabetic foot ulcer; comprehensive reviews.","authors":"Mansi Patel, Vaibhav Patel, Umang Shah, Alkeshkumar Patel","doi":"10.1080/13813455.2023.2219863","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a chronic metabolic condition linked to high blood sugar levels. Diabetes causes complications like neuropathy, nephropathy, and retinopathy. Diabetes foot ulcer (DFU) is a significant and serious wound healing issue resulting from uncontrolled DM. The main causes of the development of the DFU are oxidative stress brought on by the NO moiety, release of pro-inflammatory cytokines like tumour necrosis factor (TNF)-α and interleukin (IL-1), cellular dysfunction, and pathogenic microorganisms including <i>staphylococcus</i> and <i>streptococcus species</i>. The two main types of wounds that are prevalent in DFU patients are neuropathic and neuroischemic. If this wound is not properly treated or cared for, a lower limb may have to be amputated. There are several therapy options for DFU, including antibiotics, debridement, dressings, nano formulations, and growth factor preparations like PDGF-BB, to help the wound heal and prevent amputation. Other novel approaches involved the use of nerve taps, microneedle patches, nanotechnology-based formulations and stem cell applications to promote healing. There are possibilities of drug repurposing for the DFU treatment based on targeting specific enzymes. This article summarises the current pathophysiological aspects of DFU and its probable future targets.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"591-598"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2023.2219863","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus (DM) is a chronic metabolic condition linked to high blood sugar levels. Diabetes causes complications like neuropathy, nephropathy, and retinopathy. Diabetes foot ulcer (DFU) is a significant and serious wound healing issue resulting from uncontrolled DM. The main causes of the development of the DFU are oxidative stress brought on by the NO moiety, release of pro-inflammatory cytokines like tumour necrosis factor (TNF)-α and interleukin (IL-1), cellular dysfunction, and pathogenic microorganisms including staphylococcus and streptococcus species. The two main types of wounds that are prevalent in DFU patients are neuropathic and neuroischemic. If this wound is not properly treated or cared for, a lower limb may have to be amputated. There are several therapy options for DFU, including antibiotics, debridement, dressings, nano formulations, and growth factor preparations like PDGF-BB, to help the wound heal and prevent amputation. Other novel approaches involved the use of nerve taps, microneedle patches, nanotechnology-based formulations and stem cell applications to promote healing. There are possibilities of drug repurposing for the DFU treatment based on targeting specific enzymes. This article summarises the current pathophysiological aspects of DFU and its probable future targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病足溃疡的分子病理学和治疗学;综合评论。
糖尿病(DM)是一种与高血糖有关的慢性代谢疾病。糖尿病会引起神经病变、肾病和视网膜病变等并发症。糖尿病足溃疡(DFU)是因糖尿病未得到控制而导致的严重伤口愈合问题。造成糖尿病足溃疡的主要原因是氮氧化物分子带来的氧化应激、肿瘤坏死因子(TNF)-α 和白细胞介素(IL-1)等促炎细胞因子的释放、细胞功能障碍以及包括葡萄球菌和链球菌在内的病原微生物。DFU 患者常见的伤口主要有两种,即神经病理性伤口和神经缺血性伤口。如果这种伤口没有得到适当的治疗或护理,下肢可能不得不截肢。目前有多种治疗 DFU 的方法,包括抗生素、清创、敷料、纳米配方和生长因子制剂(如 PDGF-BB),以帮助伤口愈合并防止截肢。其他新方法包括使用神经穿刺、微针贴片、纳米技术制剂和干细胞应用来促进伤口愈合。在针对特定酶的基础上,有可能将药物重新用于 DFU 的治疗。本文总结了 DFU 目前的病理生理学方面及其未来可能的治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Physiology and Biochemistry
Archives of Physiology and Biochemistry ENDOCRINOLOGY & METABOLISM-PHYSIOLOGY
CiteScore
6.90
自引率
3.30%
发文量
21
期刊介绍: Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders. The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications. Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics: -Dysregulation of hormone receptors and signal transduction -Contribution of gene variants and gene regulatory processes -Impairment of intermediary metabolism at the cellular level -Secretion and metabolism of peptides and other factors that mediate cellular crosstalk -Therapeutic strategies for managing metabolic diseases Special issues dedicated to topics in the field will be published regularly.
期刊最新文献
Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2-/- myotubes. Lipophagy: exploring its association with male reproductive system disorders and investigating potential mechanisms. Saracatinib, a Src kinase inhibitor, enhances the renoprotective effect of metformin and losartan in diabetic nephropathy. Melatonin improves adverse vascular remodelling and redox homeostasis in monocrotaline-induced pulmonary arterial hypertension. Boldine reduces left ventricle oxidative stress in isoproterenol-induced adrenergic overload experimental model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1