Junhua Xu, Song Wan, Wei Chen, Yi Zhang, Zhenzhong Ji
{"title":"Relaxin inhibits <sup>177</sup>Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway.","authors":"Junhua Xu, Song Wan, Wei Chen, Yi Zhang, Zhenzhong Ji","doi":"10.2478/acph-2022-0032","DOIUrl":null,"url":null,"abstract":"<p><p><sup>177</sup>Lu-EDTMP (Ethylenediamine tetramethylene phosphonic acid) is the most used radioactive agent for pain palliation in bone cancer patients. The present study aims to study the impact of relaxin-2 on the <sup>177</sup>Lu-EDTMP associated cell toxicity and death in osteosarcoma cells. MG63 and Saos-2 cells were cultured with <sup>177</sup>Lu-EDTMP (37 MBq) for 24 h with and without pretreatment of recombinant relaxin 2 (RLXH2) for 12 and 24 h. <sup>177</sup>Lu-EDTMP associated cellular deterioration and death was determined by LDH, MTT, and trypan blue dye assays. ELISA-based kit was used to determine apoptotic DNA fragmentation. Western blotting was used to determine expression levels of apoptotic-related signalling pathway proteins like bcl2, poly(ADP-ribose) polymerase (PARP), and MAPK (mitogen-activated protein kinase). Our results found that RLXH2 counters <sup>177</sup>Lu-EDTMP associated cellular toxicity. Similarly, RLXH2 was able to counter <sup>177</sup>Lu-EDTMP induced cell death in a concentration and time--dependent manner. Furthermore, it was found that RLXH2 treatment prevents apoptosis in <sup>177</sup>Lu-EDTMP challenged cells through activation of the notch-1 pathway in a concentration- and time-dependent manner. We reported that RLXH2 significantly declined cellular toxicity and apoptosis associated with <sup>177</sup>Lu-EDTMP in MG63 and Saos-2 cells through the notch-1 pathway.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":"72 4","pages":"575-585"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2022-0032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2
Abstract
177Lu-EDTMP (Ethylenediamine tetramethylene phosphonic acid) is the most used radioactive agent for pain palliation in bone cancer patients. The present study aims to study the impact of relaxin-2 on the 177Lu-EDTMP associated cell toxicity and death in osteosarcoma cells. MG63 and Saos-2 cells were cultured with 177Lu-EDTMP (37 MBq) for 24 h with and without pretreatment of recombinant relaxin 2 (RLXH2) for 12 and 24 h. 177Lu-EDTMP associated cellular deterioration and death was determined by LDH, MTT, and trypan blue dye assays. ELISA-based kit was used to determine apoptotic DNA fragmentation. Western blotting was used to determine expression levels of apoptotic-related signalling pathway proteins like bcl2, poly(ADP-ribose) polymerase (PARP), and MAPK (mitogen-activated protein kinase). Our results found that RLXH2 counters 177Lu-EDTMP associated cellular toxicity. Similarly, RLXH2 was able to counter 177Lu-EDTMP induced cell death in a concentration and time--dependent manner. Furthermore, it was found that RLXH2 treatment prevents apoptosis in 177Lu-EDTMP challenged cells through activation of the notch-1 pathway in a concentration- and time-dependent manner. We reported that RLXH2 significantly declined cellular toxicity and apoptosis associated with 177Lu-EDTMP in MG63 and Saos-2 cells through the notch-1 pathway.
期刊介绍:
AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.