Min Sun, Hui Chen, Qinghua Ji, Jianhui Xiao, Yanzhe Hou, Jizhong Lou
{"title":"Measuring the elasticity of liquid-liquid phase separation droplets with biomembrane force probe.","authors":"Min Sun, Hui Chen, Qinghua Ji, Jianhui Xiao, Yanzhe Hou, Jizhong Lou","doi":"10.52601/bpr.2022.210038","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous biomacromolecules undergo liquid-liquid phase separation (LLPS) inside living cells and LLPS plays important roles in their functions. The droplets formed by LLPS molecules are complex fluids and their behavior follows fluid mechanics, thus studies on rheological and material properties are required to gain full insight into the biophysical mechanism of these droplets. Biophysical force spectroscopy techniques are particularly useful in this aspect. Indeed, atomic force microscopy and optical tweezers have been used to quantify the elasticity and the viscoelasticity of LLPS droplets. The Biomembrane Force Probe (BFP) is a single-molecule technique designed to investigate liquid-like objects and is more suitable to quantify the material properties of LLPS droplets, but its usage on LLPS droplets is not yet described. Here we present an experimental protocol to measure the Young's modulus of LLPS droplets using BFP, we believe that the application of BFP on phase separation studies can be expanded and will be very helpful in deciphering the underlying principles of LLPS.</p>","PeriodicalId":59621,"journal":{"name":"生物物理学报:英文版","volume":"8 2","pages":"68-79"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195813/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报:英文版","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2022.210038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Numerous biomacromolecules undergo liquid-liquid phase separation (LLPS) inside living cells and LLPS plays important roles in their functions. The droplets formed by LLPS molecules are complex fluids and their behavior follows fluid mechanics, thus studies on rheological and material properties are required to gain full insight into the biophysical mechanism of these droplets. Biophysical force spectroscopy techniques are particularly useful in this aspect. Indeed, atomic force microscopy and optical tweezers have been used to quantify the elasticity and the viscoelasticity of LLPS droplets. The Biomembrane Force Probe (BFP) is a single-molecule technique designed to investigate liquid-like objects and is more suitable to quantify the material properties of LLPS droplets, but its usage on LLPS droplets is not yet described. Here we present an experimental protocol to measure the Young's modulus of LLPS droplets using BFP, we believe that the application of BFP on phase separation studies can be expanded and will be very helpful in deciphering the underlying principles of LLPS.
许多生物大分子在活细胞内发生液-液相分离(LLPS), LLPS在生物大分子的功能中起着重要作用。LLPS分子形成的液滴是复杂流体,其行为遵循流体力学,因此需要对液滴的流变学和材料性质进行研究,以充分了解这些液滴的生物物理机制。生物物理力谱技术在这方面特别有用。事实上,原子力显微镜和光学镊子已经被用来量化LLPS液滴的弹性和粘弹性。生物膜力探针(Biomembrane Force Probe, BFP)是一种单分子技术,旨在研究类液体物体,更适合量化LLPS液滴的材料特性,但其在LLPS液滴上的应用尚未描述。在这里,我们提出了一种使用BFP测量LLPS液滴杨氏模量的实验方案,我们相信BFP在相分离研究中的应用可以得到扩展,并将有助于解读LLPS的基本原理。