PS$^{2}$2 F: Polarized Spiral Point Spread Function for Single-Shot 3D Sensing

Bhargav Ghanekar;Vishwanath Saragadam;Dushyant Mehra;Anna-Karin Gustavsson;Aswin C. Sankaranarayanan;Ashok Veeraraghavan
{"title":"PS$^{2}$2 F: Polarized Spiral Point Spread Function for Single-Shot 3D Sensing","authors":"Bhargav Ghanekar;Vishwanath Saragadam;Dushyant Mehra;Anna-Karin Gustavsson;Aswin C. Sankaranarayanan;Ashok Veeraraghavan","doi":"10.1109/TPAMI.2022.3202511","DOIUrl":null,"url":null,"abstract":"We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of point light sources. We show, using the Cramér-Rao lower bound, that separating the two lobes of the DHPSF and thereby capturing two separate images leads to a dramatic increase in depth accuracy. A special property of the phase mask used for generating the DHPSF is that a separation of the phase mask into two halves leads to a spatial separation of the two lobes. We leverage this property to build a compact polarization-based optical setup, where we place two orthogonal linear polarizers on each half of the DHPSF phase mask and then capture the resulting image with a polarization-sensitive camera. Results from simulations and a lab prototype demonstrate that our technique achieves up to <inline-formula><tex-math>$50\\%$</tex-math></inline-formula> lower depth error compared to state-of-the-art designs including the DHPSF and the Tetrapod PSF, with little to no loss in spatial resolution.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 8","pages":"6134-6145"},"PeriodicalIF":18.6000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9869297/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of point light sources. We show, using the Cramér-Rao lower bound, that separating the two lobes of the DHPSF and thereby capturing two separate images leads to a dramatic increase in depth accuracy. A special property of the phase mask used for generating the DHPSF is that a separation of the phase mask into two halves leads to a spatial separation of the two lobes. We leverage this property to build a compact polarization-based optical setup, where we place two orthogonal linear polarizers on each half of the DHPSF phase mask and then capture the resulting image with a polarization-sensitive camera. Results from simulations and a lab prototype demonstrate that our technique achieves up to $50\%$ lower depth error compared to state-of-the-art designs including the DHPSF and the Tetrapod PSF, with little to no loss in spatial resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PS 2 F:用于单镜头三维传感的偏振螺旋点展宽函数。
我们提出了一种依赖于工程点扩散函数(PSF)的紧凑型快照单目深度估计技术。用于显微镜超分辨率成像的传统方法,如双像素 PSF(DHPSF),并不适合比点光源稀疏集更复杂的场景。我们利用克拉梅尔-拉奥下界(Cramér-Rao lower bound)证明,分离 DHPSF 的两个叶片,从而捕捉两个独立的图像,可显著提高深度精度。用于生成 DHPSF 的相位掩模的一个特殊属性是,将相位掩模分成两半会导致两个裂片的空间分离。我们利用这一特性建立了一个基于偏振的紧凑型光学装置,将两个正交线性偏振器分别置于 DHPSF 相位掩模的两半上,然后用偏振敏感相机捕捉生成的图像。模拟和实验室原型的结果表明,与包括 DHPSF 和 Tetrapod PSF 在内的最先进设计相比,我们的技术最多可将深度误差降低 50%,而空间分辨率几乎没有损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression. Cross-Spectral Analysis of Bivariate Graph Signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1