{"title":"Curcumin Induces Ferroptosis in A549 CD133<sup>+</sup> Cells through the GSH-GPX4 and FSP1-CoQ10-NAPH Pathways.","authors":"Jiajing Zhou, Lanyue Zhang, Jifeng Yan, Aihua Hou, Wenchao Sui, Meiling Sun","doi":"10.24976/Discov.Med.202335176.26","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer stem cells (CSCs) are characterized by an ability for unlimited proliferation and efficiency of self-renewal. The targeting of lung CSCs (LCSCs)-related signaling pathways represent a promising therapeutic strategy for treatment of lung cancer. Ferroptosis a potential strategy for LCSCs treatment, and curcumin cloud induce ferroptosis. In this study, we aimed to observe the effects of curcumin on LCSCs via ferroptosis-related pathways.</p><p><strong>Methods: </strong>In this study, A549 cluster of differentiation (CD)133<sup>+</sup> and A549 CD133<sup>-</sup> cells were isolated using magnetic bead-based separation. Colony formation and sphere formation assays, as well as cells injection in non-obese diabetes/severe combined immune deficiency (NOD/SCID) mice, were used to analyze the tumorigenic ability of cells differentially expressing CD133. A549 CD133<sup>+</sup> cells were treated with different doses of curcumin (0, 10, 20, 40, 80 μM). Cell viability, glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) expressions were measured. The 50% inhibitory concentration (IC<sub>50</sub>) of curcumin, two ferroptosis inducers, inhibitor of GPX4 (RSL3) and inhibitor of FSP1 (iFSP1), and a ferroptosis inhibitor, ferrostatin-1 (Fer-1), were used to investigate the mechanism underlying the effect of curcumin on ferroptosis in A549 CD133<sup>+</sup> cells.</p><p><strong>Results: </strong>A549 CD133<sup>+</sup> cells had greater tumorigenic ability than A549 cells. Curcumin treatment suppressed the expressions of GPX4 (glutathione peroxidase 4) and FSP1 in A549 CD133<sup>+</sup> cells, thereby inducing ferroptosis. RSL3 and iFSP1 respectively suppressed the GSH (glutathione)-GPX4 and FSP1 (ferroptosis suppressor protein 1)-CoQ10 (coenzyme Q10)-nicotinamide adenine dinucleotide (NADH) pathways in A549 CD133<sup>+</sup> cells. However, the roles of curcumin were blocked by Fer-1 treatment.</p><p><strong>Conclusions: </strong>In this study, curcumin induced ferroptosis through inhibiting the GSH-GPX4 and FSP1-CoQ10-NADH pathways in A549 CD133<sup>+</sup> cells, resulting in the inhibition of their self-renewal potential.</p>","PeriodicalId":11379,"journal":{"name":"Discovery medicine","volume":"35 176","pages":"251-263"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202335176.26","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Cancer stem cells (CSCs) are characterized by an ability for unlimited proliferation and efficiency of self-renewal. The targeting of lung CSCs (LCSCs)-related signaling pathways represent a promising therapeutic strategy for treatment of lung cancer. Ferroptosis a potential strategy for LCSCs treatment, and curcumin cloud induce ferroptosis. In this study, we aimed to observe the effects of curcumin on LCSCs via ferroptosis-related pathways.
Methods: In this study, A549 cluster of differentiation (CD)133+ and A549 CD133- cells were isolated using magnetic bead-based separation. Colony formation and sphere formation assays, as well as cells injection in non-obese diabetes/severe combined immune deficiency (NOD/SCID) mice, were used to analyze the tumorigenic ability of cells differentially expressing CD133. A549 CD133+ cells were treated with different doses of curcumin (0, 10, 20, 40, 80 μM). Cell viability, glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) expressions were measured. The 50% inhibitory concentration (IC50) of curcumin, two ferroptosis inducers, inhibitor of GPX4 (RSL3) and inhibitor of FSP1 (iFSP1), and a ferroptosis inhibitor, ferrostatin-1 (Fer-1), were used to investigate the mechanism underlying the effect of curcumin on ferroptosis in A549 CD133+ cells.
Results: A549 CD133+ cells had greater tumorigenic ability than A549 cells. Curcumin treatment suppressed the expressions of GPX4 (glutathione peroxidase 4) and FSP1 in A549 CD133+ cells, thereby inducing ferroptosis. RSL3 and iFSP1 respectively suppressed the GSH (glutathione)-GPX4 and FSP1 (ferroptosis suppressor protein 1)-CoQ10 (coenzyme Q10)-nicotinamide adenine dinucleotide (NADH) pathways in A549 CD133+ cells. However, the roles of curcumin were blocked by Fer-1 treatment.
Conclusions: In this study, curcumin induced ferroptosis through inhibiting the GSH-GPX4 and FSP1-CoQ10-NADH pathways in A549 CD133+ cells, resulting in the inhibition of their self-renewal potential.
期刊介绍:
Discovery Medicine publishes novel, provocative ideas and research findings that challenge conventional notions about disease mechanisms, diagnosis, treatment, or any of the life sciences subjects. It publishes cutting-edge, reliable, and authoritative information in all branches of life sciences but primarily in the following areas: Novel therapies and diagnostics (approved or experimental); innovative ideas, research technologies, and translational research that will give rise to the next generation of new drugs and therapies; breakthrough understanding of mechanism of disease, biology, and physiology; and commercialization of biomedical discoveries pertaining to the development of new drugs, therapies, medical devices, and research technology.