Advanced Hybrid Closed Loop in Adult Population With Type 1 Diabetes: A Substudy From the ADAPT Randomized Controlled Trial in Users of Real-Time Continuous Glucose Monitoring.
Tim van den Heuvel, Ralf Kolassa, Winfried Keuthage, Jens Kroeger, Roseline Ré, Simona de Portu, Linda Vorrink, John Shin, Javier Castañeda, Robert Vigersky, Ohad Cohen
{"title":"Advanced Hybrid Closed Loop in Adult Population With Type 1 Diabetes: A Substudy From the ADAPT Randomized Controlled Trial in Users of Real-Time Continuous Glucose Monitoring.","authors":"Tim van den Heuvel, Ralf Kolassa, Winfried Keuthage, Jens Kroeger, Roseline Ré, Simona de Portu, Linda Vorrink, John Shin, Javier Castañeda, Robert Vigersky, Ohad Cohen","doi":"10.1177/19322968231161320","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This analysis reports the findings from a predefined exploratory cohort (cohort B) from the ADAPT (ADvanced Hybrid Closed Loop Study in Adult Population with Type 1 Diabetes) study. Adults with type 1 diabetes (T1D) with suboptimal glucose control were randomly allocated to an advanced hybrid closed-loop (AHCL) system or multiple daily injections of insulin (MDI) plus real-time continuous glucose monitoring (RT-CGM).</p><p><strong>Methods: </strong>In this prospective, multicenter, exploratory, open-label, randomized controlled trial, 13 participants using MDI + RT-CGM and with HbA1c ≥8.0% were randomized to switch to AHCL (n = 8) or continue with MDI + RT-CGM (n = 5) for six months. Prespecified endpoints included the between-group difference in mean change from baseline in HbA1c, CGM-derived measures of glycemic control, and safety.</p><p><strong>Results: </strong>The mean HbA1c level decreased by 1.70 percentage points in the AHCL group versus a 0.60 percentage point decrease in the MDI + RT-CGM group, with a model-based treatment effect of -1.08 percentage points (95% confidence interval [CI] = -2.17 to 0.00 percentage points; <i>P</i> = .0508) in favor of AHCL. The percentage of time spent with sensor glucose levels between 70 and 180 mg/dL in the study phase was 73.6% in the AHCL group and 46.4% in the MDI + RT-CGM group; model-based between-group difference of 28.8 percentage points (95% CI = 12.3 to 45.3 percentage points; <i>P</i> = .0035). No diabetic ketoacidosis or severe hypoglycemia occurred in either group.</p><p><strong>Conclusions: </strong>In people with T1D with HbA1c ≥8.0%, the use of AHCL resulted in improved glycemic control relative to MDI + RT-CGM. The scale of improvement suggests that AHCL should be considered as an option for people not achieving good glycemic control on MDI + RT-CGM.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968231161320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This analysis reports the findings from a predefined exploratory cohort (cohort B) from the ADAPT (ADvanced Hybrid Closed Loop Study in Adult Population with Type 1 Diabetes) study. Adults with type 1 diabetes (T1D) with suboptimal glucose control were randomly allocated to an advanced hybrid closed-loop (AHCL) system or multiple daily injections of insulin (MDI) plus real-time continuous glucose monitoring (RT-CGM).
Methods: In this prospective, multicenter, exploratory, open-label, randomized controlled trial, 13 participants using MDI + RT-CGM and with HbA1c ≥8.0% were randomized to switch to AHCL (n = 8) or continue with MDI + RT-CGM (n = 5) for six months. Prespecified endpoints included the between-group difference in mean change from baseline in HbA1c, CGM-derived measures of glycemic control, and safety.
Results: The mean HbA1c level decreased by 1.70 percentage points in the AHCL group versus a 0.60 percentage point decrease in the MDI + RT-CGM group, with a model-based treatment effect of -1.08 percentage points (95% confidence interval [CI] = -2.17 to 0.00 percentage points; P = .0508) in favor of AHCL. The percentage of time spent with sensor glucose levels between 70 and 180 mg/dL in the study phase was 73.6% in the AHCL group and 46.4% in the MDI + RT-CGM group; model-based between-group difference of 28.8 percentage points (95% CI = 12.3 to 45.3 percentage points; P = .0035). No diabetic ketoacidosis or severe hypoglycemia occurred in either group.
Conclusions: In people with T1D with HbA1c ≥8.0%, the use of AHCL resulted in improved glycemic control relative to MDI + RT-CGM. The scale of improvement suggests that AHCL should be considered as an option for people not achieving good glycemic control on MDI + RT-CGM.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.