MSM with HIV: Improving prevalence and risk estimates by a Bayesian small area estimation modelling approach for public health service areas in the Netherlands

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2023-06-01 DOI:10.1016/j.sste.2023.100577
Haoyi Wang , Chantal den Daas , Eline Op de Coul , Kai J Jonas
{"title":"MSM with HIV: Improving prevalence and risk estimates by a Bayesian small area estimation modelling approach for public health service areas in the Netherlands","authors":"Haoyi Wang ,&nbsp;Chantal den Daas ,&nbsp;Eline Op de Coul ,&nbsp;Kai J Jonas","doi":"10.1016/j.sste.2023.100577","DOIUrl":null,"url":null,"abstract":"<div><p>Despite close monitoring of HIV infections amongst MSM (MSMHIV), the true prevalence can be masked for areas with small population density or lack of data. This study investigated the feasibility of small area estimation with a Bayesian approach to improve HIV surveillance. Data from EMIS-2017 (Dutch subsample, <em>n</em> = 3,459) and the Dutch survey SMS-2018 (<em>n</em> = 5,653) were utilized. We applied a frequentist calculation to compare the observed relative risk of MSMHIV per Public Health Services (GGD) region in the Netherlands and a Bayesian spatial analysis and ecological regression to quantify how spatial heterogeneity in HIV amongst MSM is related to determinants while accounting for spatial dependence to obtain more robust estimates. Both estimations converged and confirmed that the prevalence is heterogenous across the Netherlands with some GGD regions having a higher-than-average risk. Our Bayesian spatial analysis to assess the risk of MSMHIV was able to close data gaps and provide more robust prevalence and risk estimations.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"45 ","pages":"Article 100577"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187758452300014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 3

Abstract

Despite close monitoring of HIV infections amongst MSM (MSMHIV), the true prevalence can be masked for areas with small population density or lack of data. This study investigated the feasibility of small area estimation with a Bayesian approach to improve HIV surveillance. Data from EMIS-2017 (Dutch subsample, n = 3,459) and the Dutch survey SMS-2018 (n = 5,653) were utilized. We applied a frequentist calculation to compare the observed relative risk of MSMHIV per Public Health Services (GGD) region in the Netherlands and a Bayesian spatial analysis and ecological regression to quantify how spatial heterogeneity in HIV amongst MSM is related to determinants while accounting for spatial dependence to obtain more robust estimates. Both estimations converged and confirmed that the prevalence is heterogenous across the Netherlands with some GGD regions having a higher-than-average risk. Our Bayesian spatial analysis to assess the risk of MSMHIV was able to close data gaps and provide more robust prevalence and risk estimations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
男男性行为者感染艾滋病毒:通过贝叶斯小区域估计建模方法改进荷兰公共卫生服务领域的流行率和风险估计
尽管对男男性行为者中的艾滋病毒感染进行了密切监测,但对于人口密度小或缺乏数据的地区,真实的流行率可能会被掩盖。本研究调查了用贝叶斯方法进行小面积估计以改进HIV监测的可行性。使用了EMIS-2017(荷兰子样本,n=3459)和荷兰调查SMS-2018(n=5653)的数据。我们应用频率学家计算来比较在荷兰每个公共卫生服务(GGD)地区观察到的MSMHIV的相对风险,以及贝叶斯空间分析和生态回归来量化MSM中HIV的空间异质性如何与决定因素相关,同时考虑空间依赖性,以获得更稳健的估计。两种估计都趋于一致,并证实荷兰各地的患病率是异质的,一些GGD地区的风险高于平均水平。我们评估MSMHIV风险的贝叶斯空间分析能够填补数据空白,并提供更稳健的患病率和风险估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach Employment industry and opioid overdose risk: A pre- and post-COVID-19 comparison in Kentucky and Massachusetts 2018–2021 Editorial Board Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020 Multiple “spaces”: Using wildlife surveillance, climatic variables, and spatial statistics to identify and map a climatic niche for endemic plague in California, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1