Spatial light interference microscopy: principle and applications to biomedicine.

IF 25.2 1区 物理与天体物理 Q1 OPTICS Advances in Optics and Photonics Pub Date : 2021-06-30 DOI:10.1364/AOP.417837
Xi Chen, Mikhail E Kandel, Gabriel Popescu
{"title":"Spatial light interference microscopy: principle and applications to biomedicine.","authors":"Xi Chen,&nbsp;Mikhail E Kandel,&nbsp;Gabriel Popescu","doi":"10.1364/AOP.417837","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.</p>","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"13 2","pages":"353-425"},"PeriodicalIF":25.2000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048520/pdf/nihms-1764836.pdf","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/AOP.417837","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间光干涉显微术:原理及其在生物医学上的应用。
在本文中,我们回顾了空间光干涉显微镜(SLIM),一种共路,移相干涉仪,建立在一个白光照明的相衬显微镜。作为最灵敏的定量相位成像(QPI)方法之一,SLIM可以实现无散斑的相位重建,并且具有亚纳米级的路径长度稳定性。我们首先回顾了QPI,散射和全场方法中的图像形成。然后,我们概述了从理论和仪器到衍射层析成像的SLIM成像。讨论了Zernike的相衬显微镜,SLIM的相位恢复和光晕去除算法。接下来,我们将讨论操作要求,重点介绍为SLIM内部开发的软件,该软件可实现高通量采集,整个幻灯片扫描,马赛克瓷砖配准和彩色相机成像。本文介绍了两种利用SLIM求解逆问题的方法:白光层析成像和Wolf相位层析成像。最后,综述了SLIM在基础科学和临床研究中的应用。SLIM可以研究细胞动力学、细胞生长和增殖、细胞迁移、质量运输等。在临床环境中,SLIM可以协助癌症研究、生殖技术、血液检测等。最后,我们回顾了一个新兴趋势,即SLIM成像与人工智能相结合带来了计算特异性,从而为细胞生物学和病理学中的突出挑战提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
56.60
自引率
0.00%
发文量
13
期刊介绍: Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications. The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields. The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts. AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers. Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community. In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.
期刊最新文献
Entanglement-based quantum information technology: a tutorial Silicon photonics for the visible and near infrared spectrum Recent advances in metamaterial integrated photonics High-power and high-beam-quality photonic-crystal surface-emitting lasers (PCSELs) Non-Abelian Gauge Field in Optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1