Social cohesion emerging from a community-based physical activity program: A temporal network analysis.

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Network Science Pub Date : 2021-03-01 Epub Date: 2020-08-06 DOI:10.1017/nws.2020.31
Ana María Jaramillo, Felipe Montes, Olga Lucía Sarmiento, Ana Paola Ríos, Lisa G Rosas, Ruth Hunter, Ana Lucía Rodríguez, Abby C King
{"title":"Social cohesion emerging from a community-based physical activity program: A temporal network analysis.","authors":"Ana María Jaramillo, Felipe Montes, Olga Lucía Sarmiento, Ana Paola Ríos, Lisa G Rosas, Ruth Hunter, Ana Lucía Rodríguez, Abby C King","doi":"10.1017/nws.2020.31","DOIUrl":null,"url":null,"abstract":"<p><p>Community-based physical activity programs, such as the Recreovía, are effective in promoting healthy behaviors in Latin America. To understand Recreovías' challenges and scalability, we characterized its social network longitudinally while studying its participants' social cohesion and interactions. First, we constructed the Main network of the program's Facebook profile in 2013 to determine the main stakeholders and communities of participants. Second, we studied the Temporal network growth of the Facebook profiles of three Recreovía locations from 2008 to 2016. We implemented a Time Windows in Networks algorithm to determine observation periods and a scaling model of cities' growth to measure social cohesion over time. Our results show physical activity instructors as the main stakeholders (20.84% nodes of the network). As emerging cohesion, we found: (1) incremental growth of Facebook users (43-272 nodes), friendships (55-2565 edges), clustering coefficient (0.19-0.21), and density (0.04-0.07); (2) no preferential attachment behavior; and (3) a social cohesion super-linear growth with 1.73 new friendships per joined user. Our results underscore the physical activity instructors' influence and the emergent cohesion in innovation periods as a co-benefit of the program. This analysis associates the social and healthy behavior dimensions of a program occurring in natural environments under a systemic approach.</p>","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2020.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Community-based physical activity programs, such as the Recreovía, are effective in promoting healthy behaviors in Latin America. To understand Recreovías' challenges and scalability, we characterized its social network longitudinally while studying its participants' social cohesion and interactions. First, we constructed the Main network of the program's Facebook profile in 2013 to determine the main stakeholders and communities of participants. Second, we studied the Temporal network growth of the Facebook profiles of three Recreovía locations from 2008 to 2016. We implemented a Time Windows in Networks algorithm to determine observation periods and a scaling model of cities' growth to measure social cohesion over time. Our results show physical activity instructors as the main stakeholders (20.84% nodes of the network). As emerging cohesion, we found: (1) incremental growth of Facebook users (43-272 nodes), friendships (55-2565 edges), clustering coefficient (0.19-0.21), and density (0.04-0.07); (2) no preferential attachment behavior; and (3) a social cohesion super-linear growth with 1.73 new friendships per joined user. Our results underscore the physical activity instructors' influence and the emergent cohesion in innovation periods as a co-benefit of the program. This analysis associates the social and healthy behavior dimensions of a program occurring in natural environments under a systemic approach.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社区体育活动计划产生的社会凝聚力:时间网络分析。
以社区为基础的体育活动计划,如 Recreovía 计划,在拉丁美洲有效地促进了健康行为。为了了解 Recreovías 所面临的挑战和可扩展性,我们在研究参与者的社会凝聚力和互动的同时,对其社会网络进行了纵向描述。首先,我们构建了该计划 2013 年 Facebook 个人资料的主网络,以确定参与者的主要利益相关者和社区。其次,我们研究了 2008 年至 2016 年 Recreovía 三个地点的 Facebook 个人资料的时间网络增长情况。我们采用了网络中的时间窗口算法来确定观察期,并采用城市增长的缩放模型来衡量随时间变化的社会凝聚力。我们的结果显示,体育活动指导员是主要的利益相关者(占网络节点的 20.84%)。在新兴凝聚力方面,我们发现:(1) Facebook 用户(43-272 个节点)、友谊关系(55-2565 条边)、聚类系数(0.19-0.21)和密度(0.04-0.07)的递增;(2) 没有偏好依附行为;(3) 社会凝聚力超线性增长,每个加入用户新增 1.73 个友谊关系。我们的结果强调了体育锻炼指导员的影响力和创新时期出现的凝聚力,这也是该项目带来的共同收益。这项分析以系统方法将在自然环境中开展的项目的社会维度和健康行为维度联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
期刊最新文献
Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide The latent cognitive structures of social networks Algorithmic aspects of temporal betweenness When can networks be inferred from observed groups? Generating preferential attachment graphs via a Pólya urn with expanding colors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1