Cell-Free Production and Regeneration of Cofactors.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Advances in biochemical engineering/biotechnology Pub Date : 2023-01-01 DOI:10.1007/10_2023_222
Gladwin Suryatin Alim, Takuma Suzuki, Kohsuke Honda
{"title":"Cell-Free Production and Regeneration of Cofactors.","authors":"Gladwin Suryatin Alim,&nbsp;Takuma Suzuki,&nbsp;Kohsuke Honda","doi":"10.1007/10_2023_222","DOIUrl":null,"url":null,"abstract":"<p><p>Cofactors, such as adenosine triphosphate, nicotinamide adenine dinucleotide, and coenzyme A, are involved in nearly 50% of enzymatic reactions and widely used in biocatalytic production of useful chemicals. Although commercial production of cofactors has been mostly dependent on extraction from microbial cells, this approach has a theoretical limitation to achieve a high-titer, high-yield production of cofactors owing to the tight regulation of cofactor biosynthesis in living cells. Besides the cofactor production, their regeneration is also a key challenge to enable continuous use of costly cofactors and improve the feasibility of enzymatic chemical manufacturing. Construction and implementation of enzyme cascades for cofactor biosynthesis and regeneration in a cell-free environment can be a promising approach to these challenges. In this chapter, we present the available tools for cell-free cofactor production and regeneration, the pros and cons, and how they can contribute to promote the industrial application of enzymes.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"29-49"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2023_222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Cofactors, such as adenosine triphosphate, nicotinamide adenine dinucleotide, and coenzyme A, are involved in nearly 50% of enzymatic reactions and widely used in biocatalytic production of useful chemicals. Although commercial production of cofactors has been mostly dependent on extraction from microbial cells, this approach has a theoretical limitation to achieve a high-titer, high-yield production of cofactors owing to the tight regulation of cofactor biosynthesis in living cells. Besides the cofactor production, their regeneration is also a key challenge to enable continuous use of costly cofactors and improve the feasibility of enzymatic chemical manufacturing. Construction and implementation of enzyme cascades for cofactor biosynthesis and regeneration in a cell-free environment can be a promising approach to these challenges. In this chapter, we present the available tools for cell-free cofactor production and regeneration, the pros and cons, and how they can contribute to promote the industrial application of enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无细胞生产和辅因子再生。
三磷酸腺苷、烟酰胺腺嘌呤二核苷酸和辅酶A等辅因子参与了近50%的酶促反应,并广泛用于生物催化生产有用的化学品。尽管辅因子的商业生产主要依赖于从微生物细胞中提取,但由于对活细胞中辅因子生物合成的严格调控,这种方法在实现高滴度、高产率的辅因子生产方面存在理论限制。除了辅因子的生产,它们的再生也是一个关键挑战,以使昂贵的辅因子能够持续使用,并提高酶化学制造的可行性。在无细胞环境中构建和实施用于辅因子生物合成和再生的酶级联可能是应对这些挑战的一种有前途的方法。在本章中,我们介绍了用于无细胞辅因子生产和再生的可用工具,优缺点,以及它们如何有助于促进酶的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
期刊最新文献
Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion. Production of Novel Energy Gases in Bioprocesses Using Undefined Mixed Cultures. Food and Forest Industry Waste Reuse Using Mixed Microflora. Introduction to the Use of Microbial Communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1