Yang Li, Rong Ma, Rentian Zhang, Yifan Cheng, Chunwang Dong
{"title":"A Tea Buds Counting Method Based on YOLOv5 and Kalman Filter Tracking Algorithm.","authors":"Yang Li, Rong Ma, Rentian Zhang, Yifan Cheng, Chunwang Dong","doi":"10.34133/plantphenomics.0030","DOIUrl":null,"url":null,"abstract":"<p><p>The tea yield estimation provides information support for the harvest time and amount and serves as a decision-making basis for farmer management and picking. However, the manual counting of tea buds is troublesome and inefficient. To improve the efficiency of tea yield estimation, this study presents a deep-learning-based approach for efficiently estimating tea yield by counting tea buds in the field using an enhanced YOLOv5 model with the Squeeze and Excitation Network. This method combines the Hungarian matching and Kalman filtering algorithms to achieve accurate and reliable tea bud counting. The effectiveness of the proposed model was demonstrated by its mean average precision of 91.88% on the test dataset, indicating that it is highly accurate at detecting tea buds. The model application to the tea bud counting trials reveals that the counting results from test videos are highly correlated with the manual counting results (<i>R</i> <sup>2</sup> = 0.98), indicating that the counting method has high accuracy and effectiveness. In conclusion, the proposed method can realize tea bud detection and counting in natural light and provides data and technical support for rapid tea bud acquisition.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0030"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062705/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0030","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 5
Abstract
The tea yield estimation provides information support for the harvest time and amount and serves as a decision-making basis for farmer management and picking. However, the manual counting of tea buds is troublesome and inefficient. To improve the efficiency of tea yield estimation, this study presents a deep-learning-based approach for efficiently estimating tea yield by counting tea buds in the field using an enhanced YOLOv5 model with the Squeeze and Excitation Network. This method combines the Hungarian matching and Kalman filtering algorithms to achieve accurate and reliable tea bud counting. The effectiveness of the proposed model was demonstrated by its mean average precision of 91.88% on the test dataset, indicating that it is highly accurate at detecting tea buds. The model application to the tea bud counting trials reveals that the counting results from test videos are highly correlated with the manual counting results (R2 = 0.98), indicating that the counting method has high accuracy and effectiveness. In conclusion, the proposed method can realize tea bud detection and counting in natural light and provides data and technical support for rapid tea bud acquisition.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.