Zhixin Tang, Zhuo Chen, Yuan Gao, Ruxian Xue, Zedong Geng, Qingyun Bu, Yanyan Wang, Xiaoqian Chen, Yuqiang Jiang, Fan Chen, Wanneng Yang, Weijuan Hu
{"title":"A Strategy for the Acquisition and Analysis of Image-Based Phenome in Rice during the Whole Growth Period.","authors":"Zhixin Tang, Zhuo Chen, Yuan Gao, Ruxian Xue, Zedong Geng, Qingyun Bu, Yanyan Wang, Xiaoqian Chen, Yuqiang Jiang, Fan Chen, Wanneng Yang, Weijuan Hu","doi":"10.34133/plantphenomics.0058","DOIUrl":null,"url":null,"abstract":"<p><p>As one of the most widely grown crops in the world, rice is not only a staple food but also a source of calorie intake for more than half of the world's population, occupying an important position in China's agricultural production. Thus, determining the inner potential connections between the genetic mechanisms and phenotypes of rice using dynamic analyses with high-throughput, nondestructive, and accurate methods based on high-throughput crop phenotyping facilities associated with rice genetics and breeding research is of vital importance. In this work, we developed a strategy for acquiring and analyzing 58 image-based traits (i-traits) during the whole growth period of rice. Up to 84.8% of the phenotypic variance of the rice yield could be explained by these i-traits. A total of 285 putative quantitative trait loci (QTLs) were detected for the i-traits, and principal components analysis was applied on the basis of the i-traits in the temporal and organ dimensions, in combination with a genome-wide association study that also isolated QTLs. Moreover, the differences among the different population structures and breeding regions of rice with regard to its phenotypic traits demonstrated good environmental adaptability, and the crop growth and development model also showed high inosculation in terms of the breeding-region latitude. In summary, the strategy developed here for the acquisition and analysis of image-based rice phenomes can provide a new approach and a different thinking direction for the extraction and analysis of crop phenotypes across the whole growth period and can thus be useful for future genetic improvements in rice.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0058"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249964/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0058","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
As one of the most widely grown crops in the world, rice is not only a staple food but also a source of calorie intake for more than half of the world's population, occupying an important position in China's agricultural production. Thus, determining the inner potential connections between the genetic mechanisms and phenotypes of rice using dynamic analyses with high-throughput, nondestructive, and accurate methods based on high-throughput crop phenotyping facilities associated with rice genetics and breeding research is of vital importance. In this work, we developed a strategy for acquiring and analyzing 58 image-based traits (i-traits) during the whole growth period of rice. Up to 84.8% of the phenotypic variance of the rice yield could be explained by these i-traits. A total of 285 putative quantitative trait loci (QTLs) were detected for the i-traits, and principal components analysis was applied on the basis of the i-traits in the temporal and organ dimensions, in combination with a genome-wide association study that also isolated QTLs. Moreover, the differences among the different population structures and breeding regions of rice with regard to its phenotypic traits demonstrated good environmental adaptability, and the crop growth and development model also showed high inosculation in terms of the breeding-region latitude. In summary, the strategy developed here for the acquisition and analysis of image-based rice phenomes can provide a new approach and a different thinking direction for the extraction and analysis of crop phenotypes across the whole growth period and can thus be useful for future genetic improvements in rice.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.