Sahar Khajeh, Maryam Ganjavi, Ghodratollah Panahi, Mina Zare, Mohammadreza Zare, Seyed Mohammad Tahami, Vahid Razban
{"title":"D-allose: Molecular Pathways and Therapeutic Capacity in Cancer.","authors":"Sahar Khajeh, Maryam Ganjavi, Ghodratollah Panahi, Mina Zare, Mohammadreza Zare, Seyed Mohammad Tahami, Vahid Razban","doi":"10.2174/1874467216666221227105011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the implementation of various cancer therapies, adequate therapeutic efficacy has not been achieved. A growing number of studies have been dedicated to the discovery of new molecules to combat refractory cancer cells efficiently. Recently, the use of a rare type of sugar, D-allose, has attracted the attention of research communities. In combination with the first-line treatment of cancers, including different types of radiotherapies and chemotherapies, D-allose has been detected with favorable complementary effects. Understanding the mechanism of therapeutic target molecules will enable us to develop new strategies for cancer patients that do not currently respond to the present therapies.</p><p><strong>Objective: </strong>We aimed to provide a review of the effects of D-allose in cancer treatment, its mechanisms of action, and gaps in this field that require more investigations.</p><p><strong>Discussion: </strong>With rare exceptions, in many cancer types, including head and neck, lung, liver, bladder, blood, and breast, D-allose consistently has exhibited anticancer activity in vitro and/or in vivo. Most of the D-allose functions are mediated through thioredoxin-interacting protein molecules. D-allose exerts its effects via reactive oxygen species regulation, cell cycle arrest, metabolic reprogramming, autophagy, apoptosis induction, and sensitizing tumors to radiotherapy and chemotherapy.</p><p><strong>Conclusion: </strong>D-allose has shown great promise for combating tumor cells with no side effects, especially in combination with first-line drugs; however, its potential for cancer therapy has not been comprehensively investigated <i>in vitro</i> or </>in vivo</i>.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467216666221227105011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Background: Despite the implementation of various cancer therapies, adequate therapeutic efficacy has not been achieved. A growing number of studies have been dedicated to the discovery of new molecules to combat refractory cancer cells efficiently. Recently, the use of a rare type of sugar, D-allose, has attracted the attention of research communities. In combination with the first-line treatment of cancers, including different types of radiotherapies and chemotherapies, D-allose has been detected with favorable complementary effects. Understanding the mechanism of therapeutic target molecules will enable us to develop new strategies for cancer patients that do not currently respond to the present therapies.
Objective: We aimed to provide a review of the effects of D-allose in cancer treatment, its mechanisms of action, and gaps in this field that require more investigations.
Discussion: With rare exceptions, in many cancer types, including head and neck, lung, liver, bladder, blood, and breast, D-allose consistently has exhibited anticancer activity in vitro and/or in vivo. Most of the D-allose functions are mediated through thioredoxin-interacting protein molecules. D-allose exerts its effects via reactive oxygen species regulation, cell cycle arrest, metabolic reprogramming, autophagy, apoptosis induction, and sensitizing tumors to radiotherapy and chemotherapy.
Conclusion: D-allose has shown great promise for combating tumor cells with no side effects, especially in combination with first-line drugs; however, its potential for cancer therapy has not been comprehensively investigated in vitro or >in vivo.
期刊介绍:
Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology.
Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.