Mir Sadat-Ali, Hussain K Al-Omar, Khalid W AlTabash, Ammar K AlOmran, Dakheel A AlDakheel, Hasan N AlSayed
{"title":"Genetic Influence of Fracture Nonunion (FNU): A Systematic Review.","authors":"Mir Sadat-Ali, Hussain K Al-Omar, Khalid W AlTabash, Ammar K AlOmran, Dakheel A AlDakheel, Hasan N AlSayed","doi":"10.2147/PGPM.S407308","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Nonunion of fractures occurs in about 15% of all fractures causing repeated surgical interference and prolonged morbidity. We performed this systematic review to assess genes and polymorphisms influencing fractures' nonunion (FNU).</p><p><strong>Methods: </strong>We searched between 2000 and July 2022 in PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews, Genome Wide Association Studies (GWAS) Catalog, and the Science Citation Index, with the keywords nonunion of fractures, genetic influence, and GWAS. The exclusion criteria were review articles and correspondence. The data were retrieved to determine the number of studies, genes, and polymorphisms and the total number of subjects screened.</p><p><strong>Results: </strong>A total of 79 studies were reported on nonunion of fractures and genetic influence. After the inclusion and exclusion criteria, ten studies with 4402 patients' data were analyzed. Nine studies were case-controlled, and 1 GWAS. It was identified that patients with polymorphisms in the genes <i>ANXA3, BMP2, CALY, CYR61, FGFR1, IL1β, NOG, NOS2, PDGF gene, and TACR1</i> are prone to develop a nonunion of fractures.</p><p><strong>Conclusion: </strong>We believe that for patients who develop an early nonunion of fractures, a genetic study should be conducted for single nucleotide polymorphism (SNP) and genes so that alternative and more aggressive treatment can be performed to heal fractures without prolonged morbidity.</p>","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":"16 ","pages":"569-575"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3a/03/pgpm-16-569.PMC10254683.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S407308","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Nonunion of fractures occurs in about 15% of all fractures causing repeated surgical interference and prolonged morbidity. We performed this systematic review to assess genes and polymorphisms influencing fractures' nonunion (FNU).
Methods: We searched between 2000 and July 2022 in PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews, Genome Wide Association Studies (GWAS) Catalog, and the Science Citation Index, with the keywords nonunion of fractures, genetic influence, and GWAS. The exclusion criteria were review articles and correspondence. The data were retrieved to determine the number of studies, genes, and polymorphisms and the total number of subjects screened.
Results: A total of 79 studies were reported on nonunion of fractures and genetic influence. After the inclusion and exclusion criteria, ten studies with 4402 patients' data were analyzed. Nine studies were case-controlled, and 1 GWAS. It was identified that patients with polymorphisms in the genes ANXA3, BMP2, CALY, CYR61, FGFR1, IL1β, NOG, NOS2, PDGF gene, and TACR1 are prone to develop a nonunion of fractures.
Conclusion: We believe that for patients who develop an early nonunion of fractures, a genetic study should be conducted for single nucleotide polymorphism (SNP) and genes so that alternative and more aggressive treatment can be performed to heal fractures without prolonged morbidity.
期刊介绍:
Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability.
In particular, emphasis will be given to:
Genomic and proteomic profiling
Genetics and drug metabolism
Targeted drug identification and discovery
Optimizing drug selection & dosage based on patient''s genetic profile
Drug related morbidity & mortality intervention
Advanced disease screening and targeted therapeutic intervention
Genetic based vaccine development
Patient satisfaction and preference
Health economic evaluations
Practical and organizational issues in the development and implementation of personalized medicine programs.