The possible cytotoxicity and genotoxicity assessment of indaziflam on HepG2 cells.

IF 2.7 4区 医学 Q3 TOXICOLOGY Human & Experimental Toxicology Pub Date : 2023-01-01 DOI:10.1177/09603271231183145
Serpil Könen Adıgüzel
{"title":"The possible cytotoxicity and genotoxicity assessment of indaziflam on HepG2 cells.","authors":"Serpil Könen Adıgüzel","doi":"10.1177/09603271231183145","DOIUrl":null,"url":null,"abstract":"<p><p>The use of pesticides in farmland has increased considerably to protect crops against pests, weeds, and diseases. However, pesticides and/or their residues in ecosystems may affect non-target organisms. Indaziflam is a widely used herbicide in agricultural areas in the southern region of Turkey. Therefore, this study aimed to investigate the possible genotoxic and cytotoxic effects of indaziflam on HepG2 cells using comet assay, micronucleus assay, and xCELLigence. The HepG2 cells were treated with various concentrations of indaziflam for different duration of time based on xCELLigence results. Accordingly, the cells were incubated with indaziflam at final concentrations of 1, 5, 10, 20, 40, and 80 μg/mL for 96 h for cytotoxicity assay. To assess genotoxicity, cells were treated with indaziflam at final concentrations of 10, 40, and 100 μg/mL for 4 and 24 h. Ethanol was used as a solvent for indaziflam. Hydrogen peroxide (40 μM) was used as a positive control. Studies have revealed that indaziflam did not show a statistically cytotoxic effect at the tested doses. Nevertheless, genotoxicity studies showed that indaziflam induced both DNA strand breaks and micronucleus numbers depending on the exposure time and dose.</p>","PeriodicalId":13181,"journal":{"name":"Human & Experimental Toxicology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & Experimental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09603271231183145","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of pesticides in farmland has increased considerably to protect crops against pests, weeds, and diseases. However, pesticides and/or their residues in ecosystems may affect non-target organisms. Indaziflam is a widely used herbicide in agricultural areas in the southern region of Turkey. Therefore, this study aimed to investigate the possible genotoxic and cytotoxic effects of indaziflam on HepG2 cells using comet assay, micronucleus assay, and xCELLigence. The HepG2 cells were treated with various concentrations of indaziflam for different duration of time based on xCELLigence results. Accordingly, the cells were incubated with indaziflam at final concentrations of 1, 5, 10, 20, 40, and 80 μg/mL for 96 h for cytotoxicity assay. To assess genotoxicity, cells were treated with indaziflam at final concentrations of 10, 40, and 100 μg/mL for 4 and 24 h. Ethanol was used as a solvent for indaziflam. Hydrogen peroxide (40 μM) was used as a positive control. Studies have revealed that indaziflam did not show a statistically cytotoxic effect at the tested doses. Nevertheless, genotoxicity studies showed that indaziflam induced both DNA strand breaks and micronucleus numbers depending on the exposure time and dose.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茚地夫兰对HepG2细胞可能的细胞毒性和遗传毒性评价。
农田农药的使用已大大增加,以保护作物免受害虫、杂草和疾病的侵害。然而,生态系统中的农药和/或其残留物可能影响非目标生物。Indaziflam是土耳其南部农业地区广泛使用的除草剂。因此,本研究旨在通过彗星试验、微核试验和xCELLigence来研究吲唑flam对HepG2细胞可能的基因毒性和细胞毒性作用。根据xCELLigence的结果,用不同浓度的吲唑弗兰处理HepG2细胞不同的时间。取终浓度为1、5、10、20、40、80 μg/mL的吲唑氟仑孵育96 h,进行细胞毒性测定。为了评估遗传毒性,用终浓度为10、40和100 μg/mL的吲唑弗兰处理细胞4和24 h。乙醇作为吲唑弗兰的溶剂。过氧化氢(40 μM)作为阳性对照。研究表明,在测试剂量下,茚地夫拉姆没有显示出统计上的细胞毒性作用。然而,遗传毒性研究表明,依暴露时间和剂量不同,茚地夫拉姆诱导DNA链断裂和微核数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
3.60%
发文量
128
审稿时长
2.3 months
期刊介绍: Human and Experimental Toxicology (HET), an international peer reviewed journal, is dedicated to publishing preclinical and clinical original research papers and in-depth reviews that comprehensively cover studies of functional, biochemical and structural disorders in toxicology. The principal aim of the HET is to publish timely high impact hypothesis driven scholarly work with an international scope. The journal publishes on: Structural, functional, biochemical, and molecular effects of toxic agents; Studies that address mechanisms/modes of toxicity; Safety evaluation of novel chemical, biotechnologically-derived products, and nanomaterials for human health assessment including statistical and mechanism-based approaches; Novel methods or approaches to research on animal and human tissues (medical and veterinary patients) investigating functional, biochemical and structural disorder; in vitro techniques, particularly those supporting alternative methods
期刊最新文献
CircRNA_001373 promotes liver fibrosis by regulating autophagy activation in hepatic stellate cells via the miR-142a-5p/Becn1 axis Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5‘-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway Ergot alkaloid consumption alters serotonin receptor-induced vasoactivity in ovine umbilical vasculature Expression of PVT-1 and miR-29a/29b as reliable biomarkers for liver cirrhosis and their correlation with the inflammatory biomarkers profile. Baicalein exerts beneficial effects in lipopolysaccharide-induced pulmonary inflammation by modulating macrophage polarization and inhibiting pyroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1