Daniel Heller-Trulli, Huiyun Liu, Srimoyee Mukherjee, Claire L Moore
{"title":"UBE3D Regulates mRNA 3'-End Processing and Maintains Adipogenic Potential in 3T3-L1 Cells.","authors":"Daniel Heller-Trulli, Huiyun Liu, Srimoyee Mukherjee, Claire L Moore","doi":"10.1128/mcb.00174-22","DOIUrl":null,"url":null,"abstract":"We have previously described the role of an essential Saccharomyces cerevisiae gene, important for cleavage and polyadenylation 1 (IPA1), in the regulation of gene expression through its interaction with Ysh1, the endonuclease subunit of the mRNA 3′-end processing complex. Through a similar mechanism, the mammalian homolog ubiquitin protein ligase E3D (UBE3D) promotes the migratory and invasive potential of breast cancer cells, but its role in the regulation of gene expression during normal cellular differentiation has not previously been described. ABSTRACT We have previously described the role of an essential Saccharomyces cerevisiae gene, important for cleavage and polyadenylation 1 (IPA1), in the regulation of gene expression through its interaction with Ysh1, the endonuclease subunit of the mRNA 3′-end processing complex. Through a similar mechanism, the mammalian homolog ubiquitin protein ligase E3D (UBE3D) promotes the migratory and invasive potential of breast cancer cells, but its role in the regulation of gene expression during normal cellular differentiation has not previously been described. In this study, we show that CRISPR/Cas9-mediated knockout of Ube3d in 3T3-L1 cells blocks their ability to differentiate into mature adipocytes. Consistent with previous studies in other cell types, Ube3d knockout leads to decreased levels of CPSF73 and global changes in cellular mRNAs indicative of a loss of 3′-end processing capacity. Ube3d knockout cells also display decreased expression of known preadipogenic markers. Overexpression of either UBE3D or CPSF73 rescues the differentiation defect and partially restores protein levels of these markers. These results support a model in which UBE3D is necessary for the maintenance of the adipocyte-committed state via its regulation of the mRNA 3′-end processing machinery.","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":"42 12","pages":"e0017422"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753722/pdf/mcb.00174-22.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mcb.00174-22","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously described the role of an essential Saccharomyces cerevisiae gene, important for cleavage and polyadenylation 1 (IPA1), in the regulation of gene expression through its interaction with Ysh1, the endonuclease subunit of the mRNA 3′-end processing complex. Through a similar mechanism, the mammalian homolog ubiquitin protein ligase E3D (UBE3D) promotes the migratory and invasive potential of breast cancer cells, but its role in the regulation of gene expression during normal cellular differentiation has not previously been described. ABSTRACT We have previously described the role of an essential Saccharomyces cerevisiae gene, important for cleavage and polyadenylation 1 (IPA1), in the regulation of gene expression through its interaction with Ysh1, the endonuclease subunit of the mRNA 3′-end processing complex. Through a similar mechanism, the mammalian homolog ubiquitin protein ligase E3D (UBE3D) promotes the migratory and invasive potential of breast cancer cells, but its role in the regulation of gene expression during normal cellular differentiation has not previously been described. In this study, we show that CRISPR/Cas9-mediated knockout of Ube3d in 3T3-L1 cells blocks their ability to differentiate into mature adipocytes. Consistent with previous studies in other cell types, Ube3d knockout leads to decreased levels of CPSF73 and global changes in cellular mRNAs indicative of a loss of 3′-end processing capacity. Ube3d knockout cells also display decreased expression of known preadipogenic markers. Overexpression of either UBE3D or CPSF73 rescues the differentiation defect and partially restores protein levels of these markers. These results support a model in which UBE3D is necessary for the maintenance of the adipocyte-committed state via its regulation of the mRNA 3′-end processing machinery.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.