{"title":"IncRNA MIAT Accelerates Keloid Formation by miR-411-5p/JAG1 Axis.","authors":"Yingyan Yu, Yujie Dong, Benyuan Deng, Ting Yang","doi":"10.1615/CritRevEukaryotGeneExpr.2022044734","DOIUrl":null,"url":null,"abstract":"<p><p>The long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) regulates the biological functions of many kinds of cells. The aim of this study is to explore the mechanism of MIAT and how it affects keloid progression. The expressions of MIAT, JAG1, and miR-411-5p in keloid tissues and keloid fibroblasts (KEL FIBs) were quantified by conducting Western blot and quantitative reverse transcription polymerase chain reaction analyses. The influences of MIAT, JAG1, and miR-411-5p on the abilities of KEL FIBs to proliferate, migrate, and invade were assessed by means of the CCK-8, wound healing, and Transwell experiments. To determine the binding relationship among MIAT, JAG1, and miR-411-5p, we performed luciferase reporter and RIP experiments. In keloid tissues and KEL FIBs, MIAT and JAG1 were upregulated while miR-411-5p was downregulated. Knocking-down MIAT or JAG1 significantly inhibited proliferation, migration and invasion. On the contrary, suppressing miR-411-5p expression produced an opposite effect. With regard to mechanisms, MIAT sponged miR-411-5p, which targeted JAG1. MIAT accelerates keloid formation by modulating the miR-411-5p/JAG1 axis.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 2","pages":"81-92"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022044734","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) regulates the biological functions of many kinds of cells. The aim of this study is to explore the mechanism of MIAT and how it affects keloid progression. The expressions of MIAT, JAG1, and miR-411-5p in keloid tissues and keloid fibroblasts (KEL FIBs) were quantified by conducting Western blot and quantitative reverse transcription polymerase chain reaction analyses. The influences of MIAT, JAG1, and miR-411-5p on the abilities of KEL FIBs to proliferate, migrate, and invade were assessed by means of the CCK-8, wound healing, and Transwell experiments. To determine the binding relationship among MIAT, JAG1, and miR-411-5p, we performed luciferase reporter and RIP experiments. In keloid tissues and KEL FIBs, MIAT and JAG1 were upregulated while miR-411-5p was downregulated. Knocking-down MIAT or JAG1 significantly inhibited proliferation, migration and invasion. On the contrary, suppressing miR-411-5p expression produced an opposite effect. With regard to mechanisms, MIAT sponged miR-411-5p, which targeted JAG1. MIAT accelerates keloid formation by modulating the miR-411-5p/JAG1 axis.
期刊介绍:
Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource.
Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.