Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome.

Pub Date : 2023-01-01 Epub Date: 2023-05-19 DOI:10.1007/s12561-023-09370-0
Hyung G Park, Danni Wu, Eva Petkova, Thaddeus Tarpey, R Todd Ogden
{"title":"Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome.","authors":"Hyung G Park, Danni Wu, Eva Petkova, Thaddeus Tarpey, R Todd Ogden","doi":"10.1007/s12561-023-09370-0","DOIUrl":null,"url":null,"abstract":"<p><p>This paper develops a Bayesian model with a flexible link function connecting a binary treatment response to a linear combination of covariates and a treatment indicator and the interaction between the two. Generalized linear models allowing data-driven link functions are often called \"single-index models\" and are among popular semi-parametric modeling methods. In this paper, we focus on modeling heterogeneous treatment effects, with the goal of developing a treatment benefit index (TBI) incorporating prior information from historical data. The model makes inference on a composite moderator of treatment effects, summarizing the effect of the predictors within a single variable through a linear projection of the predictors. This treatment benefit index can be useful for stratifying patients according to their predicted treatment benefit levels and can be especially useful for precision health applications. The proposed method is applied to a COVID-19 treatment study.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-023-09370-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a Bayesian model with a flexible link function connecting a binary treatment response to a linear combination of covariates and a treatment indicator and the interaction between the two. Generalized linear models allowing data-driven link functions are often called "single-index models" and are among popular semi-parametric modeling methods. In this paper, we focus on modeling heterogeneous treatment effects, with the goal of developing a treatment benefit index (TBI) incorporating prior information from historical data. The model makes inference on a composite moderator of treatment effects, summarizing the effect of the predictors within a single variable through a linear projection of the predictors. This treatment benefit index can be useful for stratifying patients according to their predicted treatment benefit levels and can be especially useful for precision health applications. The proposed method is applied to a COVID-19 treatment study.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
二元结果的异质治疗效果的贝叶斯指数模型。
本文开发了一个具有灵活链接函数的贝叶斯模型,该模型将二元治疗反应与协变量和治疗指标的线性组合以及两者之间的相互作用联系起来。允许数据驱动链接函数的广义线性模型通常被称为“单索引模型”,是流行的半参数建模方法之一。在本文中,我们专注于对异质性治疗效果进行建模,目的是结合历史数据中的先验信息开发治疗效益指数(TBI)。该模型对治疗效果的复合调节因子进行推断,通过预测因子的线性投影总结单个变量内预测因子的效果。该治疗效益指数可用于根据患者预测的治疗效益水平对患者进行分层,尤其适用于精准健康应用。所提出的方法应用于新冠肺炎治疗研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1