Humaira Aziz Sawal, Shagufta Nighat, Tanzeela Safdar, Laiba Anees
{"title":"Comparative In Silico Analysis and Functional Characterization of TANK-Binding Kinase 1-Binding Protein 1.","authors":"Humaira Aziz Sawal, Shagufta Nighat, Tanzeela Safdar, Laiba Anees","doi":"10.1177/11779322231164828","DOIUrl":null,"url":null,"abstract":"<p><p>Protein modelling plays a vital role in the drug discovery process. TANK-binding kinase 1-binding protein 1 is also called an adapter protein, which is encoded by gene <i>TBK1</i> present in <i>Homo sapiens.</i> It is found in lungs, small intestine, leukocytes, heart, placenta, muscle, kidney, lower level of thymus, and brain. It has a number of protein-binding sites, to which TBK1 and IKBKE bind and perform different functions as immunomodulatory, antiproliferative, and antiviral innate immunity which release different types of interferons. Our study predicts the comparative model of 3-dimensional (3D) structure through different bioinformatics tools that will be helpful for further studies in future. The reactivity and stability of these proteins were evaluated physicochemically and through domain determination and prediction of secondary structure using bioinformatics methods such as ProtParam, Pfam, and SOPMA, respectively. Robetta, an ab initio approach, I-TASSER, and AlphaFold was used for 3D structure prediction, and the models were validated using the SAVESv6.0 (PROCHECK) server. Conclusively, the best 3D structure of TBK1-binding protein 1 was predicted using Robetta software. After unveiling the 3D structure of the novel protein, we concluded that this structure will help us to find out its role other than in antiviral innate immunity and by producing torsion in its 3D structure researchers will be able to detect either this protein is involved in any disease or not because according to previous studies it was not associated with any disease.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a2/f9/10.1177_11779322231164828.PMC10074619.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322231164828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Protein modelling plays a vital role in the drug discovery process. TANK-binding kinase 1-binding protein 1 is also called an adapter protein, which is encoded by gene TBK1 present in Homo sapiens. It is found in lungs, small intestine, leukocytes, heart, placenta, muscle, kidney, lower level of thymus, and brain. It has a number of protein-binding sites, to which TBK1 and IKBKE bind and perform different functions as immunomodulatory, antiproliferative, and antiviral innate immunity which release different types of interferons. Our study predicts the comparative model of 3-dimensional (3D) structure through different bioinformatics tools that will be helpful for further studies in future. The reactivity and stability of these proteins were evaluated physicochemically and through domain determination and prediction of secondary structure using bioinformatics methods such as ProtParam, Pfam, and SOPMA, respectively. Robetta, an ab initio approach, I-TASSER, and AlphaFold was used for 3D structure prediction, and the models were validated using the SAVESv6.0 (PROCHECK) server. Conclusively, the best 3D structure of TBK1-binding protein 1 was predicted using Robetta software. After unveiling the 3D structure of the novel protein, we concluded that this structure will help us to find out its role other than in antiviral innate immunity and by producing torsion in its 3D structure researchers will be able to detect either this protein is involved in any disease or not because according to previous studies it was not associated with any disease.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.