Irene Caño-Carrillo, Bienvenida Gilbert-López, Lidia Montero, Ana B. Martínez-Piernas, Juan F. García-Reyes, Antonio Molina-Díaz
{"title":"Comprehensive and heart-cutting multidimensional liquid chromatography–mass spectrometry and its applications in food analysis","authors":"Irene Caño-Carrillo, Bienvenida Gilbert-López, Lidia Montero, Ana B. Martínez-Piernas, Juan F. García-Reyes, Antonio Molina-Díaz","doi":"10.1002/mas.21845","DOIUrl":null,"url":null,"abstract":"<p>In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analyzed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC–MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimization of the different analytical aspects that will condition the 2D-LC–MS performance. The presence of contaminants in food (food safety), the food quality, and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC–MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC–MS for the analysis of such complex samples.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 5","pages":"936-976"},"PeriodicalIF":6.9000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mas.21845","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mas.21845","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analyzed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC–MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimization of the different analytical aspects that will condition the 2D-LC–MS performance. The presence of contaminants in food (food safety), the food quality, and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC–MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC–MS for the analysis of such complex samples.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.