Insight into the transcription factors regulating Ischemic stroke and glioma in response to shared stimuli

IF 12.1 1区 医学 Q1 ONCOLOGY Seminars in cancer biology Pub Date : 2023-07-01 DOI:10.1016/j.semcancer.2023.04.006
Arshi Waseem , Summya Rashid , Khalid Rashid , Mohsin Ali Khan , Rehan Khan , Rizwanul Haque , Pankaj Seth , Syed Shadab Raza
{"title":"Insight into the transcription factors regulating Ischemic stroke and glioma in response to shared stimuli","authors":"Arshi Waseem ,&nbsp;Summya Rashid ,&nbsp;Khalid Rashid ,&nbsp;Mohsin Ali Khan ,&nbsp;Rehan Khan ,&nbsp;Rizwanul Haque ,&nbsp;Pankaj Seth ,&nbsp;Syed Shadab Raza","doi":"10.1016/j.semcancer.2023.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X23000640","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录因子调控缺血性脑卒中和胶质瘤对共同刺激的反应
缺血性脑卒中和神经胶质瘤是全球患者死亡的两大主要原因。尽管存在生理变异,但每10名缺血性中风患者中就有1人会发展为癌症,尤其是胶质瘤。此外,神经胶质瘤治疗也被证明会增加缺血性中风的风险。根据传统文献,癌症患者中风的发生率高于普通人群。令人难以置信的是,这些事件有多种共同的途径,但它们共同发生的确切机制仍然未知。转录因子是基因表达程序的主要组成部分,最终决定细胞的命运和稳态。缺血性中风和神经胶质瘤都表现出大量TF的异常表达,这与这两种疾病的病理生理学和进展密切相关。尽管人们对了解转录因子如何调节中风和神经胶质瘤中的基因表达非常感兴趣,但转录因子的精确基因组结合位置以及转录因子结合最终如何与转录调控相关仍然难以捉摸。因此,本综述强调了继续努力了解TF介导的基因调控的重要性,以及中风和神经胶质瘤中的一些主要共同事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in cancer biology
Seminars in cancer biology 医学-肿瘤学
CiteScore
26.80
自引率
4.10%
发文量
347
审稿时长
15.1 weeks
期刊介绍: Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field. The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies. To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area. The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.
期刊最新文献
Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems Convergent evolution of senescent fibroblasts in fibrosis and cancer with aging A systematic review of cardiovascular toxicities induced by cancer immune therapies: Underlying mechanisms, clinical manifestations and therapeutic approaches BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer Origins and molecular effects of hypoxia in cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1