Brady T West, James Wagner, Stephanie Coffey, Michael R Elliott
{"title":"Deriving Priors for Bayesian Prediction of Daily Response Propensity in Responsive Survey Design: Historical Data Analysis Versus Literature Review.","authors":"Brady T West, James Wagner, Stephanie Coffey, Michael R Elliott","doi":"10.1093/jssam/smab036","DOIUrl":null,"url":null,"abstract":"<p><p>Responsive survey design (RSD) aims to increase the efficiency of survey data collection via live monitoring of paradata and the introduction of protocol changes when survey errors and increased costs seem imminent. Daily predictions of response propensity for all active sampled cases are among the most important quantities for live monitoring of data collection outcomes, making sound predictions of these propensities essential for the success of RSD. Because it relies on real-time updates of prior beliefs about key design quantities, such as predicted response propensities, RSD stands to benefit from Bayesian approaches. However, empirical evidence of the merits of these approaches is lacking in the literature, and the derivation of informative prior distributions is required for these approaches to be effective. In this paper, we evaluate the ability of two approaches to deriving prior distributions for the coefficients defining daily response propensity models to improve predictions of daily response propensity in a real data collection employing RSD. The first approach involves analyses of historical data from the same survey, and the second approach involves literature review. We find that Bayesian methods based on these two approaches result in higher-quality predictions of response propensity than more standard approaches ignoring prior information. This is especially true during the early-to-middle periods of data collection, when survey managers using RSD often consider interventions.</p>","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"11 2","pages":"367-392"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080219/pdf/smab036.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smab036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 4
Abstract
Responsive survey design (RSD) aims to increase the efficiency of survey data collection via live monitoring of paradata and the introduction of protocol changes when survey errors and increased costs seem imminent. Daily predictions of response propensity for all active sampled cases are among the most important quantities for live monitoring of data collection outcomes, making sound predictions of these propensities essential for the success of RSD. Because it relies on real-time updates of prior beliefs about key design quantities, such as predicted response propensities, RSD stands to benefit from Bayesian approaches. However, empirical evidence of the merits of these approaches is lacking in the literature, and the derivation of informative prior distributions is required for these approaches to be effective. In this paper, we evaluate the ability of two approaches to deriving prior distributions for the coefficients defining daily response propensity models to improve predictions of daily response propensity in a real data collection employing RSD. The first approach involves analyses of historical data from the same survey, and the second approach involves literature review. We find that Bayesian methods based on these two approaches result in higher-quality predictions of response propensity than more standard approaches ignoring prior information. This is especially true during the early-to-middle periods of data collection, when survey managers using RSD often consider interventions.
期刊介绍:
The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.