3D printing and 3D-printed electronics: Applications and future trends in smart drug delivery devices.

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2023-01-01 DOI:10.18063/ijb.725
Wai Cheung Ma, Guo Liang Goh, Balasankar Meera Priyadarshini, Wai Yee Yeong
{"title":"3D printing and 3D-printed electronics: Applications and future trends in smart drug delivery devices.","authors":"Wai Cheung Ma,&nbsp;Guo Liang Goh,&nbsp;Balasankar Meera Priyadarshini,&nbsp;Wai Yee Yeong","doi":"10.18063/ijb.725","DOIUrl":null,"url":null,"abstract":"<p><p>Drug delivery devices which can control the release of drugs on demand allow for improved treatment to a patient. These smart drug delivery devices allow for the release of drugs to be turned on and off as needed, thereby increasing the control over the drug concentration within the patient. The addition of electronics to the smart drug delivery devices increases the functionality and applications of these devices. Through the use of 3D printing and 3D-printed electronics, the customizability and functions of such devices can also be greatly increased. With the development in such technologies, the applications of the devices will be improved. In this review paper, the application of 3D-printed electronics and 3D printing in smart drug delivery devices with electronics as well as the future trends of such applications are covered.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 4","pages":"725"},"PeriodicalIF":6.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/92/IJB-9-4-725.PMC10261156.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18063/ijb.725","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Drug delivery devices which can control the release of drugs on demand allow for improved treatment to a patient. These smart drug delivery devices allow for the release of drugs to be turned on and off as needed, thereby increasing the control over the drug concentration within the patient. The addition of electronics to the smart drug delivery devices increases the functionality and applications of these devices. Through the use of 3D printing and 3D-printed electronics, the customizability and functions of such devices can also be greatly increased. With the development in such technologies, the applications of the devices will be improved. In this review paper, the application of 3D-printed electronics and 3D printing in smart drug delivery devices with electronics as well as the future trends of such applications are covered.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D打印和3D打印电子产品:智能药物输送设备的应用和未来趋势。
可以根据需要控制药物释放的药物输送装置可以改善对患者的治疗。这些智能药物输送装置允许根据需要打开和关闭药物释放,从而增加对患者体内药物浓度的控制。在智能药物输送设备中添加电子设备增加了这些设备的功能和应用。通过使用3D打印和3D打印电子产品,这些设备的可定制性和功能也可以大大增加。随着这些技术的发展,器件的应用将得到进一步的提高。本文综述了3D打印电子技术和3D打印技术在电子智能给药装置中的应用以及未来的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Additive-manufactured synthetic bone model with biomimicking tunable mechanical properties for evaluation of medical implants Designing a 3D-printed medical implant with mechanically macrostructural topology and microbionic lattices: A novel wedge-shaped spacer for high tibial osteotomy and biomechanical study PBF-LB fabrication of microgrooves for induction of osteogenic differentiation of human mesenchymal stem cells Building a degradable scaffold with 3D printing using Masquelet technique to promote osteoblast differentiation and angiogenesis in chronic tibial osteomyelitis with bone defects Design of biomedical gradient porous scaffold via a minimal surface dual-unit continuous transition connection strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1