Pericytes and the Control of Blood Flow in Brain and Heart.

IF 15.7 1区 医学 Q1 PHYSIOLOGY Annual review of physiology Pub Date : 2023-02-10 DOI:10.1146/annurev-physiol-031522-034807
Thomas A Longden, Guiling Zhao, Ashwini Hariharan, W Jonathan Lederer
{"title":"Pericytes and the Control of Blood Flow in Brain and Heart.","authors":"Thomas A Longden,&nbsp;Guiling Zhao,&nbsp;Ashwini Hariharan,&nbsp;W Jonathan Lederer","doi":"10.1146/annurev-physiol-031522-034807","DOIUrl":null,"url":null,"abstract":"<p><p>Pericytes, attached to the surface of capillaries, play an important role in regulating local blood flow. Using optogenetic tools and genetically encoded reporters in conjunction with confocal and multiphoton imaging techniques, the 3D structure, anatomical organization, and physiology of pericytes have recently been the subject of detailed examination. This work has revealed novel functions of pericytes and morphological features such as tunneling nanotubes in brain and tunneling microtubes in heart. Here, we discuss the state of our current understanding of the roles of pericytes in blood flow control in brain and heart, where functions may differ due to the distinct spatiotemporal metabolic requirements of these tissues. We also outline the novel concept of electro-metabolic signaling, a universal mechanistic framework that links tissue metabolic state with blood flow regulation by pericytes and vascular smooth muscle cells, with capillary K<sub>ATP</sub> and Kir2.1 channels as primary sensors. Finally, we present major unresolved questions and outline how they can be addressed.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"85 ","pages":"137-164"},"PeriodicalIF":15.7000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280497/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-031522-034807","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Pericytes, attached to the surface of capillaries, play an important role in regulating local blood flow. Using optogenetic tools and genetically encoded reporters in conjunction with confocal and multiphoton imaging techniques, the 3D structure, anatomical organization, and physiology of pericytes have recently been the subject of detailed examination. This work has revealed novel functions of pericytes and morphological features such as tunneling nanotubes in brain and tunneling microtubes in heart. Here, we discuss the state of our current understanding of the roles of pericytes in blood flow control in brain and heart, where functions may differ due to the distinct spatiotemporal metabolic requirements of these tissues. We also outline the novel concept of electro-metabolic signaling, a universal mechanistic framework that links tissue metabolic state with blood flow regulation by pericytes and vascular smooth muscle cells, with capillary KATP and Kir2.1 channels as primary sensors. Finally, we present major unresolved questions and outline how they can be addressed.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
周细胞与脑、心血流的控制。
周细胞附着于毛细血管表面,在调节局部血流中起重要作用。利用光遗传学工具和基因编码报告,结合共聚焦和多光子成像技术,周细胞的3D结构、解剖组织和生理学最近已成为详细检查的主题。这项工作揭示了周细胞的新功能和形态学特征,如脑隧道纳米管和心脏隧道微管。在这里,我们讨论了我们目前对周细胞在脑和心脏血流控制中的作用的理解,由于这些组织的不同时空代谢需求,其功能可能有所不同。我们还概述了电代谢信号的新概念,这是一个将组织代谢状态与周细胞和血管平滑肌细胞的血流调节联系起来的通用机制框架,毛细血管KATP和Kir2.1通道是主要传感器。最后,我们提出了尚未解决的主要问题,并概述了如何解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
期刊最新文献
Proresolving Lipid Mediators in the Respiratory System. From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals. Specialized Pulmonary Vascular Cells in Development and Disease. Spatial Transcriptomics of the Respiratory System. Sex Differences in Electrophysiology and Calcium Handling in Atrial Health and Fibrillation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1