Fugitive emissions of volatile organic compounds from the pharmaceutical industry in China based on leak detection and repair monitoring, atmospheric prediction, and health risk assessment.

Fang Zhao, Yao Peng, Lin Huang, Ziwei Li, Weinan Tu, Biao Wu
{"title":"Fugitive emissions of volatile organic compounds from the pharmaceutical industry in China based on leak detection and repair monitoring, atmospheric prediction, and health risk assessment.","authors":"Fang Zhao,&nbsp;Yao Peng,&nbsp;Lin Huang,&nbsp;Ziwei Li,&nbsp;Weinan Tu,&nbsp;Biao Wu","doi":"10.1080/10934529.2023.2204806","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a leak detection and repair program was conducted on five pharmaceutical factories in China to analyze the volatile organic compounds (VOCs) emission characteristics of leaking equipment. The results indicated that the monitored components were mainly flanges, accounting for 70.23% of the total, and open-ended lines were the components most prone to leaks. The overall percentage of VOCs emissions reduction after the repair was 20.50%, and flanges were the most repairable components, with an average emission reduction of 47.5 kg/a for each flange. In addition, atmospheric predictions were conducted for the VOCs emissions before and after the repair of the components at the research factories. The atmospheric predictions showed that emissions from equipment and facilities have a noticeable impact on VOCs concentration at boundary and the emissions are positively correlated with the pollution source strength. The hazard quotient of the investigated factories was lower than the acceptable risk level set by the US Environmental Protection Agency (EPA). The quantitative assessment of the lifetime cancer risk showed that the risk levels of factories A, C, and D exceeded the EPA's acceptable risk level, and the on-site workers were exposed to inhalation cancer risk.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":"58 7","pages":"647-660"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2204806","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a leak detection and repair program was conducted on five pharmaceutical factories in China to analyze the volatile organic compounds (VOCs) emission characteristics of leaking equipment. The results indicated that the monitored components were mainly flanges, accounting for 70.23% of the total, and open-ended lines were the components most prone to leaks. The overall percentage of VOCs emissions reduction after the repair was 20.50%, and flanges were the most repairable components, with an average emission reduction of 47.5 kg/a for each flange. In addition, atmospheric predictions were conducted for the VOCs emissions before and after the repair of the components at the research factories. The atmospheric predictions showed that emissions from equipment and facilities have a noticeable impact on VOCs concentration at boundary and the emissions are positively correlated with the pollution source strength. The hazard quotient of the investigated factories was lower than the acceptable risk level set by the US Environmental Protection Agency (EPA). The quantitative assessment of the lifetime cancer risk showed that the risk levels of factories A, C, and D exceeded the EPA's acceptable risk level, and the on-site workers were exposed to inhalation cancer risk.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于泄漏检测与修复监测、大气预测和健康风险评估的中国医药工业挥发性有机化合物逸散性排放
本研究以国内5家制药厂为研究对象,对泄漏设备的挥发性有机化合物(VOCs)排放特征进行了分析。结果表明:受监测的构件以法兰为主,占70.23%,而开口管线是最易发生泄漏的构件;修复后的VOCs总体减排百分比为20.50%,其中法兰是最可修复的部件,每个法兰平均减排47.5 kg/a。此外,还对研究工厂维修前后的VOCs排放进行了大气预测。大气预测结果表明,设备设施排放对边界处VOCs浓度影响显著,且与污染源强度呈正相关。被调查工厂的危险系数低于美国环境保护署(EPA)设定的可接受风险水平。定量评价结果表明,A、C、D三家工厂的终生致癌风险水平均超过EPA可接受的风险水平,现场工人存在吸入性致癌风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
Kinetics and simulation of biodiesel production using a geopolymer heterogenous catalyst. Batch and continuous fixed bed adsorption of copper (II) from acid mine drainage (AMD) using green and recyclable adsorbent from cellulose microcrystals (CMCs). Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies. Biogenic and risk elements in wild boar testes and relation to spermatozoa motility. Behavioral and biochemical effects of environmental concentrations of caffeine in zebrafish after long-term exposure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1