Molecular Mechanisms of Transcription-Coupled Repair.

IF 12.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Annual review of biochemistry Pub Date : 2023-06-20 DOI:10.1146/annurev-biochem-041522-034232
Christopher P Selby, Laura A Lindsey-Boltz, Wentao Li, Aziz Sancar
{"title":"Molecular Mechanisms of Transcription-Coupled Repair.","authors":"Christopher P Selby,&nbsp;Laura A Lindsey-Boltz,&nbsp;Wentao Li,&nbsp;Aziz Sancar","doi":"10.1146/annurev-biochem-041522-034232","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription-coupled repair (TCR), discovered as preferential nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers located in transcribed mammalian genes compared to those in nontranscribed regions of the genome, is defined as faster repair of the transcribed strand versus the nontranscribed strand in transcribed genes. The phenomenon, universal in model organisms including <i>Escherichia coli</i>, yeast, <i>Arabidopsis</i>, mice, and humans, involves a translocase that interacts with both RNA polymerase stalled at damage in the transcribed strand and nucleotide excision repair proteins to accelerate repair. <i>Drosophila</i>, a notable exception, exhibits TCR but lacks an obvious TCR translocase. Mutations inactivating TCR genes cause increased damage-induced mutagenesis in <i>E. coli</i> and severe neurological and UV sensitivity syndromes in humans. To date, only <i>E. coli</i> TCR has been reconstituted in vitro with purified proteins. Detailed investigations of TCR using genome-wide next-generation sequencing methods, cryo-electron microscopy, single-molecule analysis, and other approaches have revealed fascinating mechanisms.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-041522-034232","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Transcription-coupled repair (TCR), discovered as preferential nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers located in transcribed mammalian genes compared to those in nontranscribed regions of the genome, is defined as faster repair of the transcribed strand versus the nontranscribed strand in transcribed genes. The phenomenon, universal in model organisms including Escherichia coli, yeast, Arabidopsis, mice, and humans, involves a translocase that interacts with both RNA polymerase stalled at damage in the transcribed strand and nucleotide excision repair proteins to accelerate repair. Drosophila, a notable exception, exhibits TCR but lacks an obvious TCR translocase. Mutations inactivating TCR genes cause increased damage-induced mutagenesis in E. coli and severe neurological and UV sensitivity syndromes in humans. To date, only E. coli TCR has been reconstituted in vitro with purified proteins. Detailed investigations of TCR using genome-wide next-generation sequencing methods, cryo-electron microscopy, single-molecule analysis, and other approaches have revealed fascinating mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录偶联修复的分子机制。
转录偶联修复(Transcription-coupled repair, TCR)是指哺乳动物基因组转录区与非转录区相比,紫外线诱导的环丁烷嘧啶二聚体的优先核苷酸切除修复,它被定义为转录基因中转录链比非转录链修复得更快。这种现象普遍存在于大肠杆菌、酵母、拟南芥、小鼠和人类等模式生物中,涉及一种转座酶,它与转录链损伤处停滞的RNA聚合酶和核苷酸切除修复蛋白相互作用,以加速修复。果蝇是一个明显的例外,它们表现出TCR,但缺乏明显的TCR转位酶。灭活TCR基因的突变导致大肠杆菌中损伤诱导的突变增加,并导致人类出现严重的神经系统和紫外线敏感性综合征。迄今为止,只有大肠杆菌TCR在体外用纯化蛋白重建。利用下一代全基因组测序方法、低温电子显微镜、单分子分析和其他方法对TCR进行的详细研究揭示了令人着迷的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of biochemistry
Annual review of biochemistry 生物-生化与分子生物学
CiteScore
33.90
自引率
0.00%
发文量
31
期刊介绍: The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.
期刊最新文献
A Lipid-Raft Theory of Alzheimer's Disease. Lipid Quality Control and Ferroptosis: From Concept to Mechanism. A Life of Translocations. Signaling from RAS to RAF: The Molecules and Their Mechanisms. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1