{"title":"Engineering Cell Therapies for Autoimmune Diseases: From Preclinical to Clinical Proof of Concept.","authors":"Sangwook Oh, Aimee S Payne","doi":"10.4110/in.2022.22.e37","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune diseases are caused by a dysfunction of the acquired immune system. In a subset of autoimmune diseases, B cells escaping immune tolerance present autoantigen and produce cytokines and/or autoantibodies, resulting in systemic or organ-specific autoimmunity. Therefore, B cell depletion with monoclonal Abs targeting B cell lineage markers is standard care therapy for several B cell-mediated autoimmune disorders. In the last 5 years, genetically-engineered cellular immunotherapies targeting B cells have shown superior efficacy and long-term remission of B cell malignancies compared to historical clinical outcomes using B cell depletion with monoclonal Ab therapies. This has raised interest in understanding whether similar durable remission could be achieved with use of genetically-engineered cell therapies for autoimmunity. This review will focus on current human clinical trials using engineered cell therapies for B cell-associated autoimmune diseases.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/bd/in-22-e37.PMC9634148.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immune Network","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4110/in.2022.22.e37","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autoimmune diseases are caused by a dysfunction of the acquired immune system. In a subset of autoimmune diseases, B cells escaping immune tolerance present autoantigen and produce cytokines and/or autoantibodies, resulting in systemic or organ-specific autoimmunity. Therefore, B cell depletion with monoclonal Abs targeting B cell lineage markers is standard care therapy for several B cell-mediated autoimmune disorders. In the last 5 years, genetically-engineered cellular immunotherapies targeting B cells have shown superior efficacy and long-term remission of B cell malignancies compared to historical clinical outcomes using B cell depletion with monoclonal Ab therapies. This has raised interest in understanding whether similar durable remission could be achieved with use of genetically-engineered cell therapies for autoimmunity. This review will focus on current human clinical trials using engineered cell therapies for B cell-associated autoimmune diseases.
自身免疫性疾病是由后天免疫系统功能失调引起的。在一部分自身免疫性疾病中,逃避免疫耐受的 B 细胞呈现自身抗原并产生细胞因子和/或自身抗体,导致全身性或器官特异性自身免疫。因此,使用针对 B 细胞系标志物的单克隆抗体来清除 B 细胞是治疗多种 B 细胞介导的自身免疫性疾病的标准疗法。在过去 5 年中,以 B 细胞为靶点的基因工程细胞免疫疗法已显示出优越的疗效,与使用单克隆抗体疗法进行 B 细胞耗竭的历史临床结果相比,B 细胞恶性肿瘤的长期缓解率更高。这引起了人们对利用基因工程细胞疗法治疗自身免疫病是否也能实现类似的持久缓解的兴趣。本综述将重点介绍目前使用工程细胞疗法治疗 B 细胞相关自身免疫性疾病的人体临床试验。
期刊介绍:
Immune Network publishes novel findings in basic and clinical immunology and aims to provide a medium through which researchers in various fields of immunology can share and connect. The journal focuses on advances and insights into the regulation of the immune system and the immunological mechanisms of various diseases. Research that provides integrated insights into translational immunology is given preference for publication. All submissions are evaluated based on originality, quality, clarity, and brevity