Translation and mRNA Stability Control.

IF 12.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Annual review of biochemistry Pub Date : 2023-06-20 Epub Date: 2023-03-31 DOI:10.1146/annurev-biochem-052621-091808
Qiushuang Wu, Ariel A Bazzini
{"title":"Translation and mRNA Stability Control.","authors":"Qiushuang Wu, Ariel A Bazzini","doi":"10.1146/annurev-biochem-052621-091808","DOIUrl":null,"url":null,"abstract":"<p><p>Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis<i>-</i>regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"92 ","pages":"227-245"},"PeriodicalIF":12.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-052621-091808","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis-regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
翻译和 mRNA 稳定性控制
信使 RNA(mRNA)的稳定性和翻译效率是转录后过程的两个关键方面,对细胞中蛋白质的产生有着深远的影响。众所周知,核糖体产生蛋白质,但过去十年的研究却令人惊讶地发现,核糖体还以依赖密码子的方式控制 mRNA 的稳定性,这一过程被称为密码子优化。因此,密码子,即核糖体读取的三个核苷酸单词,对 mRNA 的稳定性具有强大的影响,并提供超越其编码的氨基酸的顺式调控信息。虽然密码子优化的分子机制尚不清楚,但翻译延伸率似乎会引发 mRNA 的衰变。因此,转移核糖核酸成为影响 mRNA 稳定性的潜在主基因调控因子。此外,虽然在酵母中发现了一些与密码子优化相关的因子,但脊椎动物中的同源基因并不一定具有相同的功能。在这里,我们将讨论不同真核生物物种中与密码子组成相关的密码子优化发现和基因调控层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of biochemistry
Annual review of biochemistry 生物-生化与分子生物学
CiteScore
33.90
自引率
0.00%
发文量
31
期刊介绍: The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.
期刊最新文献
A Lipid-Raft Theory of Alzheimer's Disease. Lipid Quality Control and Ferroptosis: From Concept to Mechanism. A Life of Translocations. Signaling from RAS to RAF: The Molecules and Their Mechanisms. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1