{"title":"A self-propagating, barcoded transposon system for the dynamic rewiring of genomic networks.","authors":"Max A English, Miguel A Alcantar, James J Collins","doi":"10.15252/msb.202211398","DOIUrl":null,"url":null,"abstract":"<p><p>In bacteria, natural transposon mobilization can drive adaptive genomic rearrangements. Here, we build on this capability and develop an inducible, self-propagating transposon platform for continuous genome-wide mutagenesis and the dynamic rewiring of gene networks in bacteria. We first use the platform to study the impact of transposon functionalization on the evolution of parallel Escherichia coli populations toward diverse carbon source utilization and antibiotic resistance phenotypes. We then develop a modular, combinatorial assembly pipeline for the functionalization of transposons with synthetic or endogenous gene regulatory elements (e.g., inducible promoters) as well as DNA barcodes. We compare parallel evolutions across alternating carbon sources and demonstrate the emergence of inducible, multigenic phenotypes and the ease with which barcoded transposons can be tracked longitudinally to identify the causative rewiring of gene networks. This work establishes a synthetic transposon platform that can be used to optimize strains for industrial and therapeutic applications, for example, by rewiring gene networks to improve growth on diverse feedstocks, as well as help address fundamental questions about the dynamic processes that have sculpted extant gene networks.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258560/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15252/msb.202211398","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In bacteria, natural transposon mobilization can drive adaptive genomic rearrangements. Here, we build on this capability and develop an inducible, self-propagating transposon platform for continuous genome-wide mutagenesis and the dynamic rewiring of gene networks in bacteria. We first use the platform to study the impact of transposon functionalization on the evolution of parallel Escherichia coli populations toward diverse carbon source utilization and antibiotic resistance phenotypes. We then develop a modular, combinatorial assembly pipeline for the functionalization of transposons with synthetic or endogenous gene regulatory elements (e.g., inducible promoters) as well as DNA barcodes. We compare parallel evolutions across alternating carbon sources and demonstrate the emergence of inducible, multigenic phenotypes and the ease with which barcoded transposons can be tracked longitudinally to identify the causative rewiring of gene networks. This work establishes a synthetic transposon platform that can be used to optimize strains for industrial and therapeutic applications, for example, by rewiring gene networks to improve growth on diverse feedstocks, as well as help address fundamental questions about the dynamic processes that have sculpted extant gene networks.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.