[The role of cholesterol metabolism reprogramming in pancreatic cancer and the application of cholesterol-targeted metabolism drugs].

Q3 Medicine Acta physiologica Sinica Pub Date : 2023-06-25
Rui-Li Zhao, Qian-Qian Li, Yue-Se Liu, Juan Zhang
{"title":"[The role of cholesterol metabolism reprogramming in pancreatic cancer and the application of cholesterol-targeted metabolism drugs].","authors":"Rui-Li Zhao, Qian-Qian Li, Yue-Se Liu, Juan Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer has an insidious onset and lacks effective treatment methods, which is one of the tumors with the worst prognosis, so it is urgent to explore new treatment directions. Metabolic reprogramming is one of the important hallmarks of tumors. Pancreatic cancer cells in the harsh tumor microenvironment have comprehensively increased cholesterol metabolism in order to maintain strong metabolic needs, and cancer associated fibroblasts also provide cancer cells with a large amount of lipids. Cholesterol metabolism reprogramming involves the changes in the synthesis, uptake, esterification and metabolites of cholesterol, which are closely related to the proliferation, invasion, metastasis, drug resistance, and immunosuppression of pancreatic cancer. Inhibition of cholesterol metabolism has obvious anti-tumor effect. In this paper, the important effects and complexity of cholesterol metabolism in pancreatic cancer were comprehensively reviewed from perspectives of risk factors for pancreatic cancer, energy interaction between tumor-related cells, key targets of cholesterol metabolism and its targeted drugs. Cholesterol metabolism has a strict regulation and feedback mechanism, and the effect of single-target drugs in clinical application is not clear. Therefore, multi-target therapy of cholesterol metabolism is a new direction for pancreatic cancer treatment.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physiologica Sinica","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer has an insidious onset and lacks effective treatment methods, which is one of the tumors with the worst prognosis, so it is urgent to explore new treatment directions. Metabolic reprogramming is one of the important hallmarks of tumors. Pancreatic cancer cells in the harsh tumor microenvironment have comprehensively increased cholesterol metabolism in order to maintain strong metabolic needs, and cancer associated fibroblasts also provide cancer cells with a large amount of lipids. Cholesterol metabolism reprogramming involves the changes in the synthesis, uptake, esterification and metabolites of cholesterol, which are closely related to the proliferation, invasion, metastasis, drug resistance, and immunosuppression of pancreatic cancer. Inhibition of cholesterol metabolism has obvious anti-tumor effect. In this paper, the important effects and complexity of cholesterol metabolism in pancreatic cancer were comprehensively reviewed from perspectives of risk factors for pancreatic cancer, energy interaction between tumor-related cells, key targets of cholesterol metabolism and its targeted drugs. Cholesterol metabolism has a strict regulation and feedback mechanism, and the effect of single-target drugs in clinical application is not clear. Therefore, multi-target therapy of cholesterol metabolism is a new direction for pancreatic cancer treatment.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[胆固醇代谢重编程在胰腺癌中的作用及胆固醇靶向代谢药物的应用]。
胰腺癌起病隐匿,缺乏有效的治疗手段,是预后最差的肿瘤之一,因此探索新的治疗方向迫在眉睫。代谢重编程是肿瘤的重要特征之一。在严酷的肿瘤微环境中,胰腺癌细胞为了维持强大的代谢需求,胆固醇代谢全面升高,而与癌症相关的成纤维细胞也为癌细胞提供了大量的脂质。胆固醇代谢重编程涉及胆固醇的合成、摄取、酯化和代谢产物的变化,与胰腺癌的增殖、侵袭、转移、耐药和免疫抑制密切相关。抑制胆固醇代谢具有明显的抗肿瘤作用。本文从胰腺癌的危险因素、肿瘤相关细胞间的能量相互作用、胆固醇代谢的关键靶点及其靶向药物等方面,全面综述了胆固醇代谢在胰腺癌中的重要作用及其复杂性。胆固醇代谢具有严格的调控和反馈机制,单一靶点药物在临床应用中效果并不明显。因此,胆固醇代谢的多靶点治疗是胰腺癌治疗的新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta physiologica Sinica
Acta physiologica Sinica Medicine-Medicine (all)
CiteScore
1.20
自引率
0.00%
发文量
4820
期刊介绍: Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.
期刊最新文献
[Baduanjin improves sleep quality in patients with type 2 diabetes possibly via regulating Bmal1 gene]. [Construction of a mouse model of type 2 diabetes induced by high fat diet alone and evaluation of pathological changes]. [Effect of metabolic reprogramming on abdominal aortic aneurysm]. [Effects of different exercise modes on neuromuscular junction and metabolism of skeletal muscle-related proteins in aging rats]. [Noise exposure-induced stress response and its measurement methods].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1