Elinor Nemlander, Marcela Ewing, Axel C Carlsson, Andreas Rosenblad
{"title":"Transforming early cancer detection in primary care: harnessing the power of machine learning.","authors":"Elinor Nemlander, Marcela Ewing, Axel C Carlsson, Andreas Rosenblad","doi":"10.18632/oncoscience.578","DOIUrl":null,"url":null,"abstract":"Cancer remains a significant global health burden, and early detection plays a crucial role in improving patient outcomes. Primary care settings serve as frontline gatekeepers, providing an opportunity for early detection through symptom assessment and targeted screening. However, detecting early-stage cancer and identifying individuals at high risk can be challenging due to the complexity and subtlety of symptoms [1]. The challenging nature of early detection is revealed by diagnostic errors in primary care, with cancer being one of the most frequently missed or delayed diagnoses [2]. In recent years, the emergence of machine learning (ML) techniques has shown promise in revolutionizing early detection efforts [3]. This editorial explores the potential of ML in enhancing early cancer detection in primary care.","PeriodicalId":19508,"journal":{"name":"Oncoscience","volume":"10 ","pages":"20-21"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254750/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains a significant global health burden, and early detection plays a crucial role in improving patient outcomes. Primary care settings serve as frontline gatekeepers, providing an opportunity for early detection through symptom assessment and targeted screening. However, detecting early-stage cancer and identifying individuals at high risk can be challenging due to the complexity and subtlety of symptoms [1]. The challenging nature of early detection is revealed by diagnostic errors in primary care, with cancer being one of the most frequently missed or delayed diagnoses [2]. In recent years, the emergence of machine learning (ML) techniques has shown promise in revolutionizing early detection efforts [3]. This editorial explores the potential of ML in enhancing early cancer detection in primary care.