Computer-Aided Detection of Respiratory Sounds in Bronchial Asthma Patients Based on Machine Learning Method.

IF 1.1 Q4 MEDICINE, RESEARCH & EXPERIMENTAL Sovremennye Tehnologii v Medicine Pub Date : 2022-01-01 DOI:10.17691/stm2022.14.5.05
A Gelman, E G Furman, N M Kalinina, S V Malinin, G B Furman, V S Sheludko, V L Sokolovsky
{"title":"Computer-Aided Detection of Respiratory Sounds in Bronchial Asthma Patients Based on Machine Learning Method.","authors":"A Gelman,&nbsp;E G Furman,&nbsp;N M Kalinina,&nbsp;S V Malinin,&nbsp;G B Furman,&nbsp;V S Sheludko,&nbsp;V L Sokolovsky","doi":"10.17691/stm2022.14.5.05","DOIUrl":null,"url":null,"abstract":"<p><p><b>The aim of the study</b> is to develop a method for detection of pathological respiratory sound, caused by bronchial asthma, with the aid of machine learning techniques.</p><p><strong>Materials and methods: </strong>To build and train neural networks, we used the records of respiratory sounds of bronchial asthma patients at different stages of the disease (n=951) aged from several months to 47 years old and healthy volunteers (n=167). The sounds were recorded with calm breathing at four points: at the oral cavity, above the trachea, on the chest (second intercostal space on the right side), and at a point on the back.</p><p><strong>Results: </strong>The method developed for computer-aided detection of respiratory sounds allows to diagnose sounds typical for bronchial asthma in 89.4% of cases with 89.3% sensitivity and 86.0% specificity regardless of sex and age of the patients, stage of the disease, and the point of sound recording.</p>","PeriodicalId":51886,"journal":{"name":"Sovremennye Tehnologii v Medicine","volume":"14 5","pages":"45-51"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171063/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sovremennye Tehnologii v Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17691/stm2022.14.5.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of the study is to develop a method for detection of pathological respiratory sound, caused by bronchial asthma, with the aid of machine learning techniques.

Materials and methods: To build and train neural networks, we used the records of respiratory sounds of bronchial asthma patients at different stages of the disease (n=951) aged from several months to 47 years old and healthy volunteers (n=167). The sounds were recorded with calm breathing at four points: at the oral cavity, above the trachea, on the chest (second intercostal space on the right side), and at a point on the back.

Results: The method developed for computer-aided detection of respiratory sounds allows to diagnose sounds typical for bronchial asthma in 89.4% of cases with 89.3% sensitivity and 86.0% specificity regardless of sex and age of the patients, stage of the disease, and the point of sound recording.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习方法的支气管哮喘患者呼吸音的计算机辅助检测。
本研究的目的是在机器学习技术的帮助下,开发一种检测支气管哮喘引起的病理性呼吸音的方法。材料与方法:采用年龄在几个月~ 47岁的支气管哮喘不同阶段患者(n=951)和健康志愿者(n=167)的呼吸音记录构建和训练神经网络。这些声音是在四个点平静呼吸的情况下录制的:口腔、气管上方、胸部(右侧第二肋间隙)和背部的一个点。结果:建立的呼吸声计算机辅助检测方法,无论患者的性别、年龄、疾病分期和录音点如何,均能诊断出89.4%的支气管哮喘典型音,灵敏度为89.3%,特异性为86.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sovremennye Tehnologii v Medicine
Sovremennye Tehnologii v Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
1.80
自引率
0.00%
发文量
38
期刊最新文献
Optic Coherence Tomography for Accommodation Control in Children with Hyperopic Anisometropia and Amblyopia Combined Administration of Nitric Oxide and Hydrogen into Extracorporeal Circuit of Cardiopulmonary Bypass as a Method of Organ Protection during Cardiac Surgery The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review) Radiation Therapy for Chordomas and Chondrosarcomas of the Skull Base: Evaluation of the Effectiveness of Treatment Methods (Review) The Model of an Ischemic Non-Healing Wound: Regeneration after Transplantation of a Living Skin Equivalent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1